首页 > 学习方法 > 小学学习方法 > 六年级方法 > 六年级数学 > 六年级数学下册知识点2022正文

《六年级数学下册知识点2022》

时间:

小学六年级数学知识是比较难的,除了上课要认真听,课后更要主动复习和巩固学过的知识。下面小编为大家带来六年级数学下册知识点2022,希望对您有所帮助!

六年级数学下册知识点

1.1整数和整除的意义

1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,,叫做整数

2.在正整数1,2,3,4,5,,的前面添上号,得到的数1,2,3,4,5,,叫做负整数

3.零和正整数统称为自然数

4.正整数、负整数和零统称为整数

5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。

1.2因数和倍数

1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数

3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身

4.一个数的倍数的个数是无限的,其中最小的倍数是它本身

1.3能被2,5整除的数

1.个位数字是0,2,4,6,8的数都能被2整除

3.在正整数中(除1外),与奇数相邻的两个数是偶数

4.在正整数中,与偶数相邻的两个数是奇数

5.个位数字是0,5的数都能被5整除

6.0是偶数

1.4素数、合数与分解素因数

1.只含有因数1及本身的整数叫做素数或质数

2.除了1及本身还有别的因数,这样的数叫做合数

3.1既不是素数也不是合数

4.奇数和偶数统称为正整数,素数、合数和1统称为正整数

5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数

6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。

7.通常用什么方法分解素因数:树枝分解法,短除法

1.5公因数与最大公因数

1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数

2.如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数

3.如果两个数是互素数,那么这两个数的最大公因数是

6年级数学下册知识点

1.负数:负数是数学术语,指小于0的实数,如3。

任何正数前加上负号都等于负数。在数轴线上,负数都在0的左侧,所有的负数都比自然数小。负数用负号“-”标记,如2,5.33,45,0.6等。

2.正数:大于0的数叫正数(不包括0)

若一个数大于零(>0),则称它是一个正数。正数的前面可以加上正号“+”来表示。正数有无数个,其中分正整数,正分数和正无理数。

3.正数的几何意义:数轴上0右边的数叫做正数

4.数轴:规定了原点,正方向和单位长度的直线叫数轴。

所有的实数都可以用数轴上的点来表示。也可以用数轴来比较两个实数的大小。

5.数轴的三要素:原点、单位长度、正方向。

6.圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的.面所围成的旋转体

即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱。

其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线,DA和D'G旋转形成的两个圆叫做圆柱的底面,DD'旋转形成的曲面叫做圆柱的侧面。

7.圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。设一个圆柱底面半径为r,高为h,则体积V:V=πr2h;如S为底面积,高为h,体积为V:V=Sh

8.圆柱的侧面积:圆柱的侧面积=底面的周长x高,S侧=Ch(注:c为πd)

圆柱的两个圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面之间的距离叫做高(高有无数条)。

特征:圆柱的底面都是圆,并且大小一样。

9.圆锥解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。

10.圆锥立体几何定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。该直角边叫圆锥的轴。

11.圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积。一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。

根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:V=1/3Sh

S是圆锥的底面积,h是圆锥的高,r是圆锥的底面半径

12.圆锥体展开图的'绘制:圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成。(如右图)在绘制指定圆锥的展开图时,一般知道a(母线长)和d(底面直径)

13.圆锥的表面积:一个圆锥表面的面积叫做这个圆锥的表面积。

圆锥的表面积由侧面积和底面积两部分组成。

S=πR2(n/360)+πr2或(1/2)αR2+πr2(此n为角度制,α为弧度制,α=π(n/180)

14.圆柱与圆锥的关系:与圆柱等底等高的圆锥体积是圆柱体积的三分之一。

体积和高相等的圆锥与圆柱(等低等高)之间,圆锥的底面积是圆柱的三倍。

体积和底面积相等的圆锥与圆柱(等低等高)之间,圆锥的高是圆柱的三倍。

底面积和高不相等的圆柱圆锥不相等。

15.生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。圆锥在日常生活中也是不可或缺的。

六年级数学下册知识点总结

一、圆柱

1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。

圆柱也可以由长方形卷曲而得到。

两种方式:

1、以长方形的长为底面周长,宽为高;

2、以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。

2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的

3、圆柱的特征:

(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征:圆柱有无数条高

4、圆柱的切割:

①横切:切面是圆,表面积增加2倍底面积,即S增=2πr?0?5

②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh

5、圆柱的侧面展开图:

①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形

②不沿着高展开,展开图形是平行四边形或不规则图形

③无论怎么展开都得不到梯形

圆柱变形记,圆柱怎么变形成长方体?与长方体又有什么联系?怎么借助长方体的体积计算圆柱的体积?

6、圆柱的相关计算公式:

底面积:S底=πr?0?5

底面周长:C底=πd=2πr

侧面积:S侧=2πrh

表面积:S表=2S底+S侧=2πr?0?5+2πrh

体积:V柱=πr?0?5h

考试常见题型:

①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长

②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积

③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积

④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积

⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积

以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算

无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积

烟囱通风管的表面积=侧面积

只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装

侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳

侧面积+两个底面积:油桶、米桶、罐桶类

二、圆锥

1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。

2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高

3、圆锥的特征:

(1)底面的特征:圆锥的底面一个圆。

(2)侧面的特征:圆锥的侧面是一个曲面。

(3)高的特征:圆锥有一条高。

4、圆锥的切割:

①横切:切面是圆

②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh

5、圆锥的相关计算公式:

底面积:S底=πr?0?5

底面周长:C底=πd=2πr

体积:V锥=1/3πr?0?5h

考试常见题型:

①已知圆锥的底面积和高,求体积,底面周长

②已知圆锥的底面周长和高,求圆锥的体积,底面积

③已知圆锥的底面周长和体积,求圆锥的高,底面积

以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算

圆柱和圆锥的关系

1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

4、圆柱与圆锥等底等高,体积相差2/3Sh