《认识负数教学设计方案优秀4篇》
作为一位优秀的人民教师,通常会被要求编写教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。优秀的教学设计都具备一些什么特点呢?下面是小编辛苦为大家带来的认识负数教学设计方案优秀4篇,如果对您有一些参考与帮助,请分享给最好的朋友。
认识负数教学设计 篇1
教材分析
1、在学生认识了自然数和分数的基础上结合熟悉的生活情境初步认识负数了解负数的意义。会用负数表示生活中的问题。
2、教材通过学生熟悉的生活情境如气温中蕴含的具有两种相反意义的量来体会引入负数的必要性,初步理解负数的含义。
学情分析
负数这部分内容是今后进一步学习有理数的重要基础。小学生对负数概念比较抽象难以理解。因此在教学中应注意如下几点:
1、要通过生动有趣的活动和联系实际的'素材来渗透负数的概念。
2、要通过实际感知,动脑感悟,小组讨论理解,逐步培养数感,促进认识和理解。
3、教学中应注意加强知识间的联系与区别。
教学目标
知识技能:结合生活实例引导学生初步理解正负数可以表示两种相反的量。过程与方法:使学生经历负数的认识过程,体验观察比较及归纳总结的方法。情感态度与价值观:感受数学与实际生活之间的联系,激发学习兴趣,培养学生动手动脑的良好习惯。
教学重点和难点
重点:在现实情景中理解正负数的意义。突破方法:创设情景,合作探究。
难点:用正、负数描述生活中的现象。突破方法:列举、比较、分析。
《认识负数》教学设计 篇2
教材分析:负数是在学生已经认识了自然数、并初步认识了分数和小数的基础上,结合熟悉的生活情景,来初步认识负数。学习这部分内容,可以拓展学生的数概念,培养数感,也有助于培养学生的应用意识,提高学生运用数学认识世界和解决实际问题的能力。教材是根据学生已有的生活经验,选用“气温”和“温度计”这两个熟悉的情境,意在让学生感受负数与生活之间的联系,并没有复杂的概念与计算,知识层次比较浅。
教学内容
六年级(下册)第1~3页的例1、例2
教学目标
1、知识技能:了解正数与负数是实际生活需要的,会判断一个数是正数还是负数,会初步应用正负数来表示相反意义的量。
2、数学思考:通过正负数的教学,培养数感,渗透对立、统一的辩证思想。
3、问题解决:通过正数、负数的学习,培养学生应用数学知识解决实际问题的能力。
4、情感态度:从实际问题引入正数、负数,然后通过实例巩固,让学生感知到数学知识来源于生活,应用于生活。提高学习数学的兴趣。
教学重难点
在现实情境中初步认识负数的意义;用正负数描述生活中的一些简单的具有相反意义的量。
教具准备
多媒体课件。
教学过程
一、自主创造,初知正负数
1.情景引入。
用最简捷的方式记录这些信息。(师叙述,生记录。)
①1路公共汽车在昆山宾馆站上来2位乘客,到亭林站下去2位乘客。
②本学期咱们五年级转来25名新同学,转走16名同学。
③小明妈妈投资股票,四月份赚了6000元,五月份亏了2000元
【设计意图:以现实生活素材为教学切入口,创设一种具体的生活情境展开教学,凸现数学知识源于生活的理念。同时,在记录数据的过程中,让学生因为需要而思考,因为思考而创造。】
2、揭示课题
“+2、-2”前面的“+”叫做正号、“-”叫做负号,正号和负号与以前学的加减号写法相同,但表示的意义却有所区别。今天我们就来学习用正数和负数表示意思相反的量。(板书课题)
二、沟通联系,再识正负数
1.教学例1
(1)情景呈现。
师:五(2)班的孩子,刚在外面上完一节体育课,外面可真热呀!(课件出示32℃温度计),下课后他们喜滋滋地吃起了冷饮(出示0℃),这些冷饮是工人叔叔从冰库里搬出来的(出示温度-23℃)
【设计意图:利用信息技术资源丰富、时效性强的特点,改变教材中提供冬天气温的例题,使学生的学习内容更加丰富多彩】
(2)师:这三种温度各是多少?根据刚才的学习,可以怎样表示这些温度?
板书:0℃、+32℃、-23℃
哪种温度最高?
(3)师:在读出刚才三个温度时,要注意看清什么?
小结:要找准0℃,它正好是零上温度和零下温度的分界点。零上温度可以用正数表示,零下温度可用负数表示。
【设计意图:让学生先读数,再说说读数后的感受,培养了学生的数感。】
2.归纳正数、负数和0的关系。
师:瞧,黑板上有这么多正数、负数朋友了,谁来把他们分一分?
归纳:正数都大于0,负数都小于0.0既不是正数,也不是负数(完成板书:负数<0<正数)。
三、读读写写,掌握正负数
1.读两个海拔高度,请同学们互相读一读。
2.读温度,先自己读一读,你们会把这些温度从高排到低吗?
3.写几个正数和负数
【设计意图:充分挖掘习题功能,在展示学生个性化表达的同时,巧妙地运用信息化环境,引出正数和负数的对应关系,体会正数和负数时无限的】
四、链接生活,应用正负数
1.提问:在生活中你们遇到过用正负数表示的事情吗?
(1)存折(课件展示)
师:这里的“-600”是什么意思?
(2)刘翔在美国尤金精英赛中,110米栏的成绩是13.23秒,当时赛场风速为每秒-0.4米。
讨论:风速怎么会有负的?
如果风速是+0.4米,你认为比赛的成绩会怎样?
2.多媒体介绍负数的产生史。
【设计意图:把数学知识从课外移入课内,开阔了学生的视野,丰富了课余知识】
认识负数教学设计 篇3
教学内容:
苏教版国标本五年级上册《认识负数》第一课时
教学目标:
1、在具体情境中认识负数,感受负数的实际意义;会正确读写正、负数;初步感知正、负数可以表示两种相反的关系;知道负数都小于零,正数都大于零。
2、体验生活与数学的联系,会用正负数的知识解释生活现象。
教学过程:
一、创设情境,激趣引入
(多媒体出示沈阳大雪时的一幅照片)
师:这是沈阳大雪时的一幅照片。猜猜看,这时的气温可能是多少度?(指名口答)
(评:以温度引入负数,符合学生的认知特点。“猜温度”既能服务于本节课的教学重点,又有利于激发学生的学习热情。)
二、借助经验,自主探究
1、认识温度计
师:在日常生活中,人们往往借助温度计来测量温度。(多媒体出示温度计图)你了解温度计吗?把你了解的情况和大家交流一下,好吗?
:温度计上有两种计量单位:一种是摄氏度,一种是华氏度。我国统一使用摄氏度。
师:[多媒体出示标有沈阳温度读数(零下20℃)的温度计]谁能读出图中沈阳的温度?说一说你是怎样看出来的?(指名口答)
师:(多媒体依次出示读数为零下22℃、零下18℃的温度计图)这时的温度又是多少呢?你能说说是怎样看出来的吗?
[评:认识温度计是本环节的教学要点,而正确地读出温度计所示的零下温度又是本节课的教学难点。通过零下20℃、零下22℃、零下18℃的对比练习,既突出教学要点,又能有效地突破教学难点。]
2、教学例1。
(1)教学正、负数读写法
谈话:同学们,咱们幅员辽阔,南方和北方在气温上有很大差异。当沈阳还是千里冰封的世界时,南京和海口的气温又是多少呢?咱们一一下。(多媒体出示三幅温度计图:沈阳零下20℃;南京0℃;海口零上20℃)
师:从这几幅图中,你能看出南京和海口的气温吗?你能说说怎样看出来的吗?你还能得到哪些重要的数学信息?(小组讨论、指名汇报交流。)
师:沈阳和海口的气温一样吗?为什么?
你能用自己喜欢的方式表示这两个不同的温度吗?(学生记录后,展示、交流。)
师:数学语言需要交流,交流就要符号统一。(展示并板书—20℃、+20℃)这是科学家规定的记录方法。
讲解:“—”是负号,“+”是正号,要写得小一点。—20℃读作负二十摄氏度;+20℃读作正二十摄氏度。+20℃也可以简单记作20℃。
(2)练一练。
(多媒体出示标有吐鲁番盆地某一天最低气温和最高气温的温度计图:零下9℃、零上27℃)
师:你能用刚才的方法把它们记录下来吗?[指名反馈,教师揭示
(板书):—9℃、27℃]
[评:通过练一练,既可以使学生更为准确、熟练地掌握零上温度和零下温度的表示方法,又为引入例2起到过渡作用。]
3、教学例2。
(1)出示例2。
师:吐鲁番盆地的早晚温差非常大。人们常这样来形容:“早穿棉袄午穿纱、围着火炉吃西瓜”。这与它的地理特征有很大关系。(出示例2:珠穆朗玛峰比海平面高8844米;吐鲁番盆地比海平面低155米。)
(2)教师讲解“海拔”的含义。
(3)你能用以上的方法表示出这两个海拔高度吗?(学生独立完成后,指名口答。板书:8844米、—155米)
(4)练一练。
(多媒体出示:读一读下面的海拔高度,说一说分别是高于海平面还是低于海平面?
黑海海拔高度是—28米。
马里亚纳海沟最深处的海拔是—11034米。
(评:两道例题两个层次,例1通过让学生观察、讨论、交流等数学活动,初步感知负数,并掌握负数的表示方法;例2教师则完全放手,让学生根据例1中温度的表示方法,类推出海拔的表示方法。教学方法一详一略,一扶一放。)
三、抽象概括,沟通联系。
1、揭示概念。
师(指板书):这里有许多数量,如果把它们的单位名称去掉,就得到一个个的数。你能把这些数分分类吗?
师:像—20、—9、—155这样的数都是负数。你还能说出几个负数吗?能说得完吗?
像+20、27、8844这样的数都是正数。你还能说出几个正数吗?能说得完吗?
揭示课题(板书)。
2、介绍负数产生的历史。
(多媒体出示教科书第九页“你知道吗?”)
3、认识0与正、负数的关系。
师:你认为0是正数还是负数呢?理由是什么?(小组讨论、指名汇报结果)
0与负数比、0与正数比,大小有什么关系?(指名回答)
[评:揭示正负数时,让学生经历“具体——抽象(由具体数量抽象出数)”的过程,符合儿童认知规律;让学生列举正、负数,可以初步感知正数的个数和负数的个数都是无限的。]
四、巩固练习,应用拓展。
1、选择合适的温度连一连。(多媒体出示教科书练习一第四题)
2、你知道这些温度吗?读一读。(教科书练习一第五题)
3、你能在温度计上表示出这些温度吗?(多媒体出示地图,闪烁温度:石家庄﹣5℃、长春﹣10℃、杭州5℃、桂林10℃)
(让学生在练习纸上完成后,比一比这几个城市温度的高低。)
4、小明的一则。
20xx年7月18日晴
今天天气很热,大约有10℃。好多爱美的女士为了避暑都打上了遮阳伞。
我跟着爸爸来到他上班的冷食加工厂,一进加工车间,感到凉飕飕的,估计温度大概有—15℃。爸爸打开冷柜,马上有一股寒气袭来,我猜冰柜里的温度大约有8、9℃吧。
回来的路上,碰到了同学,我们就聊开了。洪军说:前几天,他们全家到泰山旅游,爬上了海拔﹣1545米的山顶;晓玲说:他们全家去了连云港,听说连云港海的最低处是海拔34米呢!
……
这则中有些数据不符合实际情况,你能找出来吗?你知道怎么改吗?
[评:以的形式展示数学内容,既贴近生活、新颖有趣,又有利于联系实际、培养数感。]
五、全课。
师:这节课我们一起认识了负数。你有哪些收获,分享,好吗?
六、拓展延伸。
让学生课外注意观察身边的事物,搜集一些可以用负数表示的数量。
认识负数教学设计方案 篇4
一、教学目标:
1、使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2、使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3、使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
二、教学重点:
初步认识正数和负数以及读法和写法。
三、教学难点:
理解0既不是正数,也不是负数。
四、教学具准备:
多媒体课件、温度计、练习纸、卡片等。
五、教学过程:
(一)游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)
②向前走200米(向后走200米)
③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。
②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。
④零上10摄氏度(零下10摄氏度)。
说明什么是相反意义的量(意义正好相反)
3、谈话:周老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
(二)教学例
1、认识温度计,理解用正负数来表示零上和零下的温度。
课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?
(1)现在你能看出南京是多少摄氏度吗?(是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。
(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的"关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?
(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。
①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
负号能不能省略不写?为什么?
②北京的`气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)
3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
(三)学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。
2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。
你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。
吐鲁番盆地的海拔可以记作:-155米。(板书)
(2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。
(四)小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)
①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?
②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:什么是正数、负数?
师:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0是正负数的分界点,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把以前学过的,象+4、16、3/8、0、5、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)
(五)联系生活,巩固练习
1、练习一第2、3题
2、你知道吗:水沸腾时的温度是____。水结冰时的温度是____。地球表面的最低温度是。
3、讨论生活中的正数和负数
(1)存折:这里的-800表示什么意思?(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)
(2)电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?
(六)课堂小结
这节课我们一起认识了正数和负数。在我们的生活中,零摄氏度以上和零摄氏度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。
经过一学期“生本对话”课题研究,全班已基本形成课前自学的习惯。在此基础上,本学期提高了对预习的要求(不仅要完成课后“做一做”,而且要尝试提出有思考价值的数学问题),也想逐步改变教学方式,以学生的问题带动全课的教学推进。
今天,学生在例1环节只提出了教材中的一个问题“16℃和—16℃的意义相同吗”,并追问了“为什么”,再无其它疑问。对于“为什么”也回答得很清晰,看来生活积淀为负数的学习打好了坚实的基础。在此,我补充了认识温度计上的温度这一知识点。主要出于以下两点考虑:一是为第二课时数轴上表示正负数做准备;二是联系生活实际,提升学生的数学应用意识。我所绘制的温度计是以5℃为一个单位长度,在练习中发现部分学生读或指温度时有错误,主要是—16℃与—14℃易混淆。在此引导学生辨析,并教给他们方法。
在例2中学生质疑的问题明显增加。有
(1)“正数、负数的意义是什么”;
(2)“正数、负数的区别是什么”;
(3)“为什么0既不是正数,也不是负数”;
(4)“算式中的会有负数吗?如果有,它和减号如何区分?”其中前三个问题是本节课内容,后一个问题涉及到初中的代数知识。学生们答疑的水平较高。如第一问,回答问题的学生不是像教材那样用举例子的方式来描述正、负数的意义,而是用抽象概括的语言总结其含义。“大于0的数是正数,小于0的数是负数”,多棒呀,看来学生的能力不可小瞧!第三个问题是由我解释,从而帮助学生了解其原因。最后一个问题为帮助学生更好实现中小衔接,我也进行了补充介绍,提升他们的学习兴趣。
但学生的此次质疑还不够全面,主要表现在对读法较忽视。为此,我补充提问了“+”号可以省略吗?省略后怎样读?它还是正数吗?“—”号可以省略吗?为什么?怎样读?强调读法及正负数的表示方法。
最后,根据本班学情,我补充了下列练习,提升综合应用能力。下面记录的是3位学生的期末数学考试成绩。以他们的平均成绩为标准,把平均分记为0分,超过平均分记为正、不足的分数为负,在表格中用正、负数表示他们的分数。