首页 > 教学教案 > 教案大全 > 教学设计 > 相反数教案精选8篇正文

《相反数教案精选8篇》

时间:

相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。相反数的性质是他们的绝对值相同。这次漂亮的小编为您带来了相反数教案精选8篇,在大家参照的同时,也可以分享一下给您最好的朋友。

相反数教案 篇1

教学目标

1.了解相反数的意义,会求有理数的相反数;

2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.

3.初步认识对立统一的规律。

教学建议

一、重点、难点分析

本节的重点是了解相反数的意义,理解相反数的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为相反数。另外,“0的相反数是0”也是相反数定义的一部分。关于“数a的相反数是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。

二、知识结构

相反数的定义 相反数的性质及其判定 相反数的应用

三、教法建议

这节课教学的主要内容是互为相反数的概念。

由于教材先讲相反数,后讲绝对值,所以相反数的定义只是形式上的描述,主要通过相反数的几何意义理解相反数的概念。教学中建议,直接给出相反数的几何定义,通过实例了解求一个数的相反数的方法。按着数轴――相反数――绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。

四、相反数的相关知识

相反数 篇2

若 互为相反数,则 ,反之若 ,则 互为相反数。

4.多重符号化简

(1)相反数的意义是简化多重符号的依据。如 是-1的相反数,而-1的相反数为+1,所以 。

(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则

果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。

例如, 。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。

相反数教案 篇3

相反数

一、学习与导学目标:

知识与技能:借助数轴理解相反数的好处,懂得数轴上表示相反数的两个点关于原点对称,会求有理数的相反数;

过程与方法:经历概念的生成、应用,体会相反数的好处,简化数的符号,学习观察、归纳、概括的策略与方法;

情感态度:透过师生、生生合作学习,促进交流,激发兴趣。

二、学程与导程活动:

A、准备活动:

1、师生游戏“唱反调”:我们明白在小学学过的0以外的数前面加上负号“-”的数就是负数。此刻我说一个正数,你们给它添上“-”号说出来,我如果说一个负数,你们反过来说出对应的正数。+3、+1、-1/2、-18.4、0.75,学生很快说出-3、-1、1/2、18.4、-0.175。

2、上述“唱反调”的两个数3与-3,1与-1,-1/2与1/2……,在数轴上对应的点的位置如何?可推荐生择两组在数轴上表示以后作答(在原点两侧到原点的距离相等,真可谓从原点背道而驰“唱反调”)。

提问:数轴上与原点距离是4的点有几个?这些点表示的数是多少?

归纳:设a是一个正数,数轴上与原点距离是a的点有两个,分别在原点左右表示-a和a,我们说这两点关于原点对称。

B、学习概念:

1、像3和-3,1和-1,-1/2和1/2这样,只有负号不同的两个数给它一个什么样的关系名称适宜呢?生:互为相反数,师:很好,我们把上述只有负号不同的两个数叫做互为相反数(oppositenumber)。也就是说3的相反数是-3,-3的相反数是3。可见:相反数是成对出现的,不能单独存在。

一般地,a和-a互为相反数。“-a”可读成“a的相反数”。

2、在数轴上看,表示相反数的两个点和原点有什么关系?(关于原点对称)

3、从上述好处上看,你看如何规定0的相反数更为合理?

商讨得:0的相反数仍是0,即0的相反数等于它本身。

C、应用举例:

1、两人一组,一人任说一个有理数,请同伴说出它的相反数。

2、如果a=-a,那么表示数a的点在数轴上的什么位置?a=?(a=0)。

3、在正数前面添上“-”号,就得到这个数的相反数,同样地,在任意一个数前面添上“-”号,新的数就表示原数的相反数,如:-(+5)=-5,-(-5)=5,-0=0。

结合前面相反数好处的量的学习,还可赋予-(-5)怎样的好处,从而帮忙自己理解-(-5)=5吗?

4、化简下列各数P124练习,你愿意继续尝试化简下列各式吗?

+(-2/3),-(-2/3),-(+2/3),+(+2/3)

你能试着总结规律吗?(括号内外同号结果为正,括号内外异号结果为负)。

5、若a=-5,则-a=;若-x=7,则x=。

三、笔记与板书提纲:

课题应用举例中的2

活动引例应用举例中的4(学生练习),5

概念

四、练习与拓展选题:

1、教科书P18/3;

2、如图是正方形纸盒的侧面展示图,请你在正方形内分别填上6个不同的数,使折成正方体后相对的面上的两个数互为相反数(写出满足条件的一种情形即可)。

相反数 篇4

一、素质教育目标

(一)知识教学点

1.了解:互为相反数的几何意义.

2.掌握:给出一个数能求出它的相反数.

(二)能力训练点

1.训练学生会利用数轴采用数形结合的方法解决问题.

2.培养学生自己归纳总结规律的能力.

(三)德育渗透点

1.通过解释相反数的几何意义,进一步渗透数形结合的思想.

2.通过求一个数的相反数,使学生进一步认识对应、统一规律.

(四)美育渗透点

1.通过求一个数的相反数知道任何一个数都有它的相反数,学生会进一步领略到数的完整美.

2.通过简化一个数的符号,使学生进一步体会数学的简洁美.

二、学法引导

1.教学方法:利用引导发现法,教师注意过渡导语的设置,充分发挥学生的主体地位.

2.学生学法:感性认识→理性认识→练习反馈→总结.

三、重点、难点、疑点及解决办法

1.重点:求已知数的相反数.

2.难点:根据相反数的意义化简符号.

四、课时安排

1课时

五、教具学具准备

投影仪、三角板、自制胶片.

六、师生互动活动设计

学生演示,教师点拨,师生共同得出相反数的概念,教师出示投影,学生以多种形式练习反馈.

七、教学步骤

(一)探索新知,导入新课

1.互为相反数的概念的引出

演示活动:要一个学生向前走5步,向后走5步.

提出问题“如果向前为正,向前走5步,向后走5步各记作什么?

学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步.

[板书]

+5, -5

师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为相反数.

[板书]2.3  相反数

【教法说明】由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为相反数.

师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数(一个学生板演,其他学生自练)

师:这样的两个数即互为相反数,你能试述具备什么特点的两数是互为相反数?(学生讨论后举手回答)

[板书]只有符号不同的两个数,其中一个叫另一个的相反数.

【教法说明】在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为相反数的两数,这时不急于总结互为相反数的概念,而是又提供了一个学生体会概念的机―利用数轴任找一组互为相反数的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出相反数的概念.

2.理解概念

(出示投影1)

判断:(1)-5是5的相反数( )

(2)5是-5的相反数( )

(3)与互为相反数( )

(4)-5是相反数( )

学生活动:学生讨论.

【教法说明】对概念的理解不是单纯地强调,根据学生判断的结果加深对相反数“互为”的理解,提高学生全面分析问题的能力.

相反数教案 篇5

课题:相反数

教学目标:

(一)知识目标:借助数轴理解相反数的好处;会求一个数的相反数;会用相反数的定义对一个式子进行化简。

(二)潜力目标:透过观察相反数在数轴上所表示的点得特征,培养学生的归纳潜力以及数形结合思想。

教学重点:相反数的好处以及双重符号的化简。

教学难点:相反数的概念以及“-a”的理解。

教学过程:

(一)创设情境,引出新课

在一东西走向的公路上,小明和小红同时从某点以相同的速度2米每秒向相反的方向行走,小明向东,小红向西。若以向东为正反向,那么1s后,小明的位置,

小红的位置();2s后,小明的位置(),小红的位置();3s后,小明的位置(),小红的位置().

提问:以上三组数之间有什么相同点和不同点?

数字相同,符号相反。

(二)给出概念

只有正负号不同的两个数互为相反数。

口答:3.5的相反数?-2的相反数?-15的`相反数?

让学生们在数轴上表示出以上3组数以及0

思考:在数轴上,每组数所在的点的位置有什么关系?

(到原点距离相同)

讨论:0的相反数是什么?

0到原点的距离为0,数轴上到原点距离为0的点只有0,故0的相反数是0本身。

(三)深化探究

正数的相反数是()负数的相反数是()。

在任意的数前面加一个“-”号,就得到该数的相反数。

提问:以下各数表示的好处:

(1)-(+5)

(2)-(-6)

(3)-0

(4)-(+1.2)

那么“-a”的好处?(数a的相反数)

“-a”是负数吗?

1.a为正数时,它的相反数-a是负数;2.a是负数时,它的相反数-a是正数;3.a为0时,-a为0.故-a不必须是负数。

(四)双重符号的化简

(1)-(+5)

(2)-(-6)

(3)-(+1.2)

(五)基础知识练习

1.决定正误。

(1)-2是相反数。

(2)-3和+3互为相反数。

(3)正数和负数互为相反数。

(4)若两个数互为相反数,则这两个数必须是一个正数,一个负数。

2.化简下列各数。

(1)-(+8)

(2)-(-3)

(3)+(-7)

(4)-(-a)

3.若-x=-7,则x=.

4.(1)若a和1-a互为相反数,那么a=()

A.0B.-1C.1D.-2

(2)若一个数的相反数是非负数,那么这个数是()

A.0B.负数C.非正数D.正数

(五)本节小结

(六)课后思考及作业

思考:如果a大于-a,那么a在数轴上的位置?

如果a小于-a,那么a在数轴上的位置?

相反数 篇6

3.的相反数是.  例,……

随堂练习答案

1.略     2.C  B  D

作业 答案

(一)必做题:

1.(1)1.6,0.2,(2),3

2.16,-20,50,8.07,

(二)选作题:

1.(1)6,(2)9

2.(1);(2).

相反数 篇7

教学目标

1.使学生理解相反数的意义;

2.使学生掌握求一个已知数的相反数;

3.培养学生的观察、归纳与概括的能力.

教学重点和难点

重点:理解相反数的意义,理解相反数的代数定义与几何定义的一致性.

难点:多重符号的化简.

课堂教学过程设计

一、从学生原有的认知结构提出问题

二、师生共同研究相反数的定义

特点?

引导学生回答:符号不同,一正一负;数字相同.

像这样,只有符号不同的两个数,我们说它们互为相反数,如+5与

应点有什么特点?

引导学生回答:分别在原点的两侧;到原点的距离相等.

这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为相反数.这个概念很重要,它帮助我们直观地看出相反数的意义,所以有的书上又称它为相反数的几何意义.

相反数 篇8

3.的相反数是.  例,……

随堂练习答案

1.略     2.C  B  D

作业答案

(一)必做题:

1.(1)1.6,0.2,(2),3

2.16,-20,50,8.07,

(二)选作题:

1.(1)6,(2)9

2.(1);(2).

5),-(-7),-0的结果,让学生自己尝试得出结果,突破难点.