《全等三角形教学反思(最新15篇)》
作为一名人民教师,我们要在教学中快速成长,通过教学反思能很快的发现自己的讲课缺点,我们该怎么去写教学反思呢?
内容导航
全等三角形教学反思 1初中数学《全等三角形》教案 2数学《全等三角形》教案 3数学全等三角形教案 4数学全等三角形教案 5全等三角形教学反思 6全等三角形教学反思 7全等三角形教案 8数学全等三角形教案 9数学全等三角形教案 10全等三角形教学反思 11《全等三角形》说课稿 12全等三角形教案 13全等三角形的优秀教案 14全等三角形教学反思 1
《探索直角三角形全等的条件》是第五章的重点,这节课我首先让学生回顾判定三角形全等的条件,在此基础之上通过一个测量舞台背景的实际问题自然地过渡到探索直角三角形全等的条件上来,此处设置疑问引起了学生们的思考和讨论,随着探究活动的一步步展开,出现了在直角三角形中有两边和其中一边的对角对应相等的两个三角形全等,这和学生们已学的知识产生了矛盾,激发了学生的兴趣和探究欲望,在强烈的求知欲望的驱动下同学们主动探索新知。在探索新知时我按照教材采取了画图的方法,但我没有先给出图形的`作法或是直接演示画图过程,因为前面已经学习了画三角形的知识,我认为教师不只是教会学生知识,而且要教会学生会用知识,让学生自己独立思考画图,这既锻炼了学生的能力,还摆脱了他们的依赖性,使他们将所学知识学以致用。学生们经历画图、观察、比较、推理、交流的过程,逐步探索出最后的结论。在这个过程中,学生不仅得到了两个直角三角形全等的条件,同时体会到了由一般到特殊的数学思想方法,积累了数学活动经验,锻炼了他们动手操作、合作交流、推理概括的能力。这一节课改变了以往的数学教学方式,学生们借助已有的知识和方法主动探索新知识,在探索新知过程中教师走入学生之中,帮助有困难的同学解决问题,师生互动,这样做既尊重了学生的主体地位又发挥了教师的引导作用,突出自主学习、合作交流、探究式学习的特点,符合新课程改革的要求。
本节课教学中练习题的安排,先是基础知识快问快答,再是随堂练习,最后是议一议,练习题由易到难,分层次的变式训练强化了知识及其应用的多样性,遵循了学生思维发展的自然规律,逐步提高学生解决问题的能力,从而体现了数学课程的发展性。在习题中设置了旗杆、滑梯的倾斜角的问题,目的在于生动展现三角形全等在生活中的广泛应用,将数学知识的学习和应用紧密结合起来,这样既增强学生对数学的兴趣,也体会了数学与现实的密切联系,让学生切实感受到生活中处处有数学。
在这节课中本人的不足之处是每个环节的教学时间把握不够好,导致课堂超时2分钟,练习题相对较少,为了让学生更好地掌握本节课知识我应该加强课后练习和辅导。在处理习题时由于黑板板块小的原因取消了学生板书和讲解的活动安排,只着重锻炼了学生的语言表达能力,而事实上学生在证明过程中存在书写格式的问题,我应该在平时的教学中指正学生存在的问题,针对学生的薄弱之处加强练习。教师应该尊重学生的个体差异,教师在教学中容易忽略一些表现不活跃和落后的学生,对他们提问的次数相对少些,本人在教学中有时也让那些“活跃份子”吸引眼球,但是我清醒地知道这个课堂是每一位同学的课堂,所以我应该在学生讨论和练习之前留给学生充分的独立思考时间,不要让那些思维快、爱发言的同学掩盖他们的疑问或代替了他们的发言,在小组合作和全班交流中给不同层次的学生留有一个平台,互相学习,取长补短,使知识的学习和吸收更具有实效性。
初中数学《全等三角形》教案 2
一、教学目标
【知识与技能】
理解并掌握全等三角形的概念及性质。
【过程与方法】
经历观察、操作、测量等探究活动,增强动手能力和解决问题的能力。
【情感、态度价值观】
感受生活中的数学,体会数学的魅力,从而激发学习数学的兴趣,获得成功的情感体验。
二、教学重难点
【教学重点】
全等三角形的概念与性质。
【教学难点】
全等三角形的性质。
三、教学过程
(一)导入新课
图片导入,请学生观察生活中的全等图形的图片。提问:其中的图形有什么特点?适当请学生举例,导入课题。
(二)讲解新知
1.操作观察,得出概念
给学生分发纸板,请他们将各自的三角尺按在纸板上,画下图形,并裁下。这里要提醒学生用剪刀要注意安全。
提问:照图形裁下来的`纸板和三角尺的形状、大小完全一样吗?把三角尺和裁得的纸板放在一起能够完全重合吗?
预设:形状大小完全一样,能完全重合。
多媒体上展示用同一张底片冲洗出来的两张尺寸大小一样的照片,请学生观察,放在一起是否也能完全重合。
接着请学生回答,教师展示洗出来的两张照片,进行重合,请学生观察。
在学生得到特点之后,教师总结全等形和全等三角形的概念。
2.平移、翻折、旋转,对应关系
小组活动:对一个三角形作出平移、翻折、旋转三种变换,然后动手操作进行探究,看看对于变换前后的两个三角形,什么变了?什么没变?
预设:位置变了,形状大小没变。
教师总结:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。
3.对应顶点、对应边、对应角
请学生将平移前后的两个三角形重合,找出重合的顶点、边、角,并标出来。
教师提出概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合
数学《全等三角形》教案 3
教材分析:
《三角形全等复习课内容》选用义务教育课程标准实验教材《数学》(华师大版)九年级上册,三角形全等是初中数学中重要的学习内容之一。本套教材把三角形全等看作是三角形相似的特殊情况,同时三角形全等的概念,三角形全等的识别方法,与命题与证明,尺规作图几部分内容相互联系紧密,尤其是尺规作图中作法的合理性和正确性的解释依赖于全等知识。本章中三角形全等的识别方法的给出都通过同学们画图、讨论、交流、比较得出,注重同学们实际操作能力,为培养同学们参与意识和创新意识提供了机会。
设计理念:
针对教材内容和初三同学们的实际情况,组织同学们通过摆拼全等三角形和探求全等三角形的活动,让同学们感悟到图形全等与平移、旋转、对称之间的关系,并通过同学们动手操作,让同学们掌握全等三角形的一些基本形式,在探求全等三角形的过程中,做到有的放矢。然后利用角平分线为对称轴来画全等三角形的方法来解决实际问题,从而达到会辨、会找、会用全等三角形知识的目的。
教学目标:
1、通过全等三角形的概念和识别方法的复习,让同学们体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。
2、培养同学们观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力。
3、在同学们操作过程中,激发同学们学习的兴趣,培养同学们主动探索,敢于实践的精神,培养同学们之间合作交流的习惯。
教学的重点和难点:
重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。
难点:运用全等三角形知识来解决实际问题。
教学过程设计:
一、创设问题情境:
某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的玻璃,那么�
今天我们这节课来复习全等三角形。(引出课题)。
师:识别三角形及等的方法有哪些?
生:SAS 、 SSS、 ASA、 AAS 、 HL。
复习回顾:练习1、将两根钢条AA/、BB/中点O连在一起,使AA/、BB/绕着点O自由转动,做成一个测量工具,则A/B/的长等于内槽宽AB,判定△OAB≌△OA/B/现由( )
练习2、已知AB//DE,且AB=DE,
(1)请你只添加一个条件,使△ABC≌△DEF,
你添加的条件是
(2)添加条件后,证明△ABC≌△DEF?
[根据不同的添加条件,要求同学们能够叙述三角形全等的条件和全等的现由,鼓励同学们大胆的表述意见]
二、探求新知:
师:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?
请同组合作,交流,并把有代表性的摆放进行投影。
熟记全等三角形的基本形式,为探求全等三角形打下基础,提醒同学们注意两个全等三角形的对应边和对应角。同学们的摆放形式很多,包括那些平时数学成绩不好的同学们也跃跃欲试,教师给予肯定和鼓励激发他们学习的积极性和主动性。
例1、如图一张矩形纸片沿着对角线剪开,得到两张三角形纸片ABC、DEF,再将这两张三角形纸片摆成右图的形式,使点B、F、C、D处在同一条直线上,P、M、N为其他直线的交点。
(1)求证:AB⊥ED
(2)若PB=BC,请找出右图中全等三角形,并给予证明。
用多媒体演示图形的变化过程。
师:图3中AB与ED有怎样的位置关系?同同学们猜想一下结果。
生甲:AB垂直ED
师:为什么?可以从几方面来考虑?
生乙:可以从图形运动变化的过程来考虑
生丙:可以考虑全等在已知条件下,显然有△ABC≌△DEF,故∠A=∠D,又∠ANP=∠DNC,所以,∠APN=∠Dcom=900,即AB⊥ED。
(根据同学们的回答,教师板演)
师:若PB=BC,找出右图中全等三角形,看看谁能找得最快?
生丁:△PBD≌△CBA(ASA)
师:板演,由AB⊥ED,可得到∠BPD=900,∠BPD=∠CBA,∠A=∠D,PB=BC,故有△PBD≌△CBA(ASA)。
师:还有其他三角形全等吗?
生:有,我连接BN,由勾股定理得PN=com,就不难得到△APN≌△Dcom。
(在错综复杂的图形中寻找全等三角形是一件不容易的事,要鼓励同学们大胆的猜想,努力探求,在同学们的叙述过程中,教师及时纠正同学们叙述中的错误,训练同学们严谨的学习态度和学习习惯。)
例2、(动手画)(1)已知OP为∠AOB平分线,请你利用该图画一对以OP所在直线为对称轴的全等三角形。
教师在黑板上画好∠AOB和直线OP,同学们独立思考,然后请几个同学们在黑板上演示。
师生总结:想要画出符合条件的三角形,只要在射线OA、OB上找到一对关于OP对称的点就可以了。
(2)利用上图作全等三角形方法,在△ABC中,∠B=600,∠ABC是直角,AD、CE是∠BAC,∠DCA的平分线,AD、CE相交于F,请判断FE与FD间数量关系。
师:请同学们用三角尺和量角器准确画出此图,然后量出EF、FD的长度,看看EF与FD长度
关系如何?
生:基本相等。
生:长度相等。
师:如何来证明他们相等?注意审题。
同学们先独立思考后,组内交流,等到有同学举手发言。
生:在AC上取点H,使AH=AE,则△AEF≌△AHF则EF=FH
师:为什么要这么做?你是怎么想到的?
生:因为要证明线段相等要考虑三角形全等,而EF、FD所在两个三角形显然不全等,又AD是平分线,在AC上找出E关于AD有对称点H得到△AEF≌△AHF。
师:这样只能得到EF=FH。
生:再证明△FHC≌△FDC。
生:先求出AD、CE是角平分线∠APC=1200,则∠DPC=∠EPA=∠APH=600,所以∠HPC=
∠DPC=600,PC=PC,∠3=∠4,因为△HCP≌△DCP(ASA)所以PD=PH。
(看清题意,猜想结果是解决探究题的重要环节,教师要留给同学们一定思考时间,同时鼓励同学们尝试和交流,鼓励同学们勇于探索以及同学之间的合作。)
师生共同小结:
1、熟记全等三角形的基本形态,会找全等三角形的对应边和对应角。
2、在错综复杂的几何图形中能够寻找全等三角形。
3、利用角平分线的对称性构造三角形全等,并利用三角形的全等性质解决线段之间的等量关系。
4、运用全等三角形的'识别法可以解决很多生活实际问题。
作业:
1、在例2中,如果∠ACB不是直角,而(1)中的其他条件不变,请问:你在(1)中所得结论能成立吗?若成立,请证明,若不成立,请说明理由。
2、书本课后复习题
教学反思:
本教学设计从以下三方面考虑:
1、根据同学们的学习情况,改进同学们的学习方式,强调合作交流,探索学习,教师在教学过程中,努力为同学们创设自主探索的氛围,让同学们真正成为课堂主体。
2、重视对同学们能力的培养,除常规的鼓励就大胆思考,积极发言,重视培养同学们观察、操作、测试、思考的能力,同学们的活跃,他们思考问题的方式是多种多样,教师从对完全更改,尊重他们的学习方式,这样有助于创新
3、重视对同学们学习习惯的培养,全等三角形是几何部分内容说明书,有较强逻辑性,教师板演,以及在同学们叙述中纠正同学们的错误,是培养同学们养成良好的习惯之一,同时同学们学习习惯多方面的,在合作交流中,培养同学们合作意识和合作习惯培养显得尤为重要。
数学全等三角形教案 4
全等三角形
课题:全等三角形
教学目标:
1、知识目标:
(1)知道什么是全等形、全等三角形及全等三角形的对应元素;
(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;
(3)能熟练找出两个全等三角形的对应角、对应边。
2、能力目标:
(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;
(2)通过找出全等三角形的对应元素,培养学生的识图能力。
3、情感目标:
(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角
教学用具:直尺、微机
教学方法:自学辅导式
教学过程:
1、全等形及全等三角形概念的引入
(1)动画(几何画板)显示:
问题:你能发现这两个三角形有什么美妙的关系吗?
一般学生都能发现这两个三角形是完全重合的。
(2)学生自己动手
画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。
(3)获取概念
让学生用自己的语言叙述:
全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发现:
(1)电脑动画显示:
问题:对应边、对应角有何关系?
由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。
3、 找对应边、对应角以及全等三角形性质的应用
(1) 投影显示题目:
D、AD∥BC,且AD=BC
分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来
说明:根据位置元素来找:有相等元素,其即为对应元素:
然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
说明:利用“运动法”来找
翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素
旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素
平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素
求证:AE∥CF
分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等
∴AE∥CF
说明:解此题的关键是找准对应角,可以用平移法。
分析:AB不是全等三角形的对应边,
但它通过对应边转化为AB=CD,而使AB+CD=AD-BC
可利用已知的AD与BC求得。
说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。
(2)题目的解决
这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:
投影显示:
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
(3)有公共边的,公共边一定是对应边;
(4)有公共角的,角一定是对应角;
(5)有对顶角的,对顶角一定是对应角;
两个全等三角形中一对最长边(或角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)
4、课堂独立练习,巩固提高
此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。
5、小结:
(1)如何找全等三角形的对应边、对应角(基本方法)
(2)全等三角形的性质
(3)性质的应用
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。
6、布置作业
a.书面作业P55#2、3、4
b.上交作业(中考题)
数学全等三角形教案 5
【课前准备】
1.定义:能够的两个三角形叫全等三角形。
2.全等三角形的性质,全等三角形的判定方法见下表。
【例题讲解】
一。挖掘“隐含条件”判全等
如图,△ABE≌△ACD,由此你能得到什么结论?(越多越好)
1.如图AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由。
变式训练:AC=BD,∠CAB=∠DBA,试说明:BC=AD
2.如图点D在AB上,点E在AC上,CD与BE相交于点O,
且AD=AE,AB=AC.若∠B=20°,CD=5cm,则∠CD的度数与BE的长。
3.如图若OB=OD,∠A=∠C,若AB=3cm,求CD的长。
变式训练2,如图AC=BD,∠C=∠D试说明:(1)AO=BO(2)CO=DO(3)BC=AD
二。添条件判全等
1.如图,已知AD平分∠BAC,要使△ABD≌△ACD,
根据“SAS”需要添加条件;
根据“ASA”需要添加条件;
根据“AAS”需要添加条件。
2.已知AB//DE,且AB=DE,
(1)请你只添加一个条件,使△ABC≌△DEF,
你添加的`条件是。
三。熟练转化“间接条件”判全等
1.如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?
为什么?
2.如图,∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?
3.“三月三,放风筝”,如图是小明同学制作的风筝,他根据AB=AD,CB=CD,不用度量,他就知道∠ABC=∠ADC,请你用学过的知识给予说明。
巩固练习:如图,在中,,沿过点B的一条直线BE
折叠,使点C恰好落在AB变的中点D处,则∠A的度数。
4.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.说明:∠A=∠D
【当堂反馈】
1.(20xx攀枝花市)如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明。所添条件为全等三角形是△≌△
2.如图,已知AB=AD,∠B=∠D,∠1=∠2,说明:BC=DE
3.如图,已知AB=DE,∠D=∠B,∠EFD=∠BCA,说明:AF=DC
4.等腰直角△ABC,其中AB=AC,∠BAC=90°,过B、C作经过A点直线L的垂线,垂足分别为M、N
(1)你能找到一对三角形的全等吗?并说明。
(2)BM,com,MN之间有何关系?
若将直线l旋转到如下图的位置,其他条件不变,那么上题的结论是否依旧成立?
【课后作业】
1.如图,要用“SAS”说明ΔABC≌ΔADC,若AB=AD,则需要添加的条件是。
要用“ASA”说明ΔABC≌ΔADC,若∠ACB=∠ACD,则需要添加的条件是。
2..如图,在ΔABC中,AD⊥BC,CE⊥AB.垂足分别为D.E,交于点H,请你添加一个适当的条件:,使ΔAEH≌ΔCEB.
(第3题)
(第4题)(第5题)(第6题)
3.如图,已知AD平分∠BAC,AB=AC,则此图中全等三角形有()
A..2对B.3对C.4对D.5对
4.如图,ΔABC中,AB=AC,BE=EC,则由“SSS”可判定()
A.ΔABD≌ΔACDB.ΔABE≌ΔACEC.ΔBED≌ΔCEDD.以上答案都不对
5.如图,Rt△ABC中,∠C=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且其中一个是等腰三角形。(保留作图痕迹,不要求写作法和证明).
6.如图,一个六边形钢架ABCDEF,由6条钢管连接而成,为使这一钢架稳固,请你用3条钢管使它不能活动,你能设计两种不同的方案吗?
7:如图11-9在△ABC中。⑴分别以AB、AC为边向形外作正方形ABDE、ACFG.
试说明:①CE=BG;②CE⊥BG;
⑵如图11-10分别以AB、AC为边向形外作正三角形△ABD、△ACE.
试说明:①CD=BE;②求CD和BE所成的锐角的度数。
【拓展延伸】
如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF
(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由。
全等三角形教学反思 6
一、取得的效果:
一开始我分配给不同的组的学生给定不同的直角边和斜边动手画直角三角形,然后让同组的学生把自己画出的图剪下来跟别的同学生比较,让他们把发现的结果口述出来。再把不同组的三角形作个对比,让他们把发现的情况说出来。然后通过提出问题,为什么不同组的三角形不管是大小还是形状都不一样,而同组的却又一样。让学生讨论明白也即是只要有一条直角边一样,斜边也一样这样的三角形画出来的结果是能够完全互相重合的。从而引入了“hl”定理。从授课过程中学生的参与热情很高,这样做一是可以让学生探究在给定了一条直角边和斜边以后,怎样把一个三角形画出来,强化了他们的动手能力同时也增强了他们的团结合作能力,二是可以让他们经历了知识的从感性认识到理性认识这么个过程。
二、存在如下的不足:
从学生作业反馈的情况来看,主要存在以下的问题:一是学生在证明直角三角形全等时,个别学生出现了以角代边的现象,也即是用一对直角相等加一对斜边相等来代替了“hl”。二是不少的学生利用所学的知识来解决简单的'问题能力欠缺。这同时也说明了,在上课过程中存在了这或那的不足,如分组讨论时,可能有些学生不是在讨论问题,而是在聊天或者是做其他的事。或者是我在讲解时讲得不够透要么对于学困生的关注不够,以致学生对于定理的理解不够清楚。
三、解决方法
1.课后多布置专题练习,针对不同类型的学生布置不同的作业。
2、在上课过程中多关注学困生。
3、课后多与学生交流,以了解他们的接受程度以便改进自己的授课速度,适当调整知识拓展的难易度。
全等三角形教学反思 7
三角形全等的判定方法一:边边边公理,是三角形判定方法研究的第一课时。本课在教学时有三个难点:
1、体会有一组量、两组量对应相等的两个三角形不一定全等;
2、三组量对应相等的各种情况的分类;
3、利用“边边边”判定全等推理的书写格式。
本节课的重点是探索三角形全等的“边边边”的条件;了解三角形的稳定性及其在生活中的应用;运用三角形全等的“边边边”的条件判别两个三角形是否全等,并能解决一些简单的实际问题。
有学生的预习,难点1的突破还是可以很快进行的,但是反例的列举还不够。难点2是学生分类解决问题能力的检验,学生能够很顺利地分成四类:三条边、两边一角、两角一边、三个角,但是不能更加细致地分类,不能进一步把两边一角分为两边及其它们的夹角、两边及其中一边的对角;不能把两角一边进一步分为两角及其夹边、两角及其中一角的对边。从课上的实施看,四种情况的分类基本做得比较好。课后细想,进一步的分类,本课也可以不再进行,可以到下一课再细化。理由是:学习是一个循序渐进的过程,没有必要每一次的新知引进都要一步到位,况且本课要处理的问题还是挺多的,课堂教学要有所侧重。难点3的'引导较好,但是学生全等推理的书写格式还有待于继续训练。证明全等的准备条件在写两个三角形全等之前就要书写说明;直接条件直接写,隐含条件要挖掘。
从本课的教学情况看,学生的预习还需指导,学生对课本上探究2的操作比较粗糙,课堂上需要教者认真示范引领;课堂容量的把握要适度,本课我安排了两个例题,一个开放型填空题和四个解答证明题,学生的思维训练是充分的,四个证明题也是有学生上黑板板演的,多数同学是能够全部完成,但是不可否认,还是有同学没有来得及,作一个角等于已知角的教学还不很充分,全面提高学生的教学质量要真正得到保证。
在课堂上让学生能参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法。通过三角形稳定性的实例,让学生产生了学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下了基础。
全等三角形教案 8
教学目标:
1了解全等形及全等三角形的的概念;
2 理解全等三角形的性质
3 在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉,
重点:探究全等三角形的性质
难点:准确的找出两个全等三角形的`对应边,对应角
教学过程:观察图案,指出这些图案中中形状与大小相同的图形。
获取概念:全等形、全等三角形、对应边、对应角、对应顶点 。
全等形:形状、大小相同的图形放在一起能够完全重合,能够完全重合的
两个图形叫做全等形。
一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。
全等三角形:能够完全重合的两个三角形叫做全等三角形。
“全等”用?表示,读作“全等于”
注意:两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如△ abc ≌ △def全等时,点a和点d,点b和点e,点c和点f是对应顶点,记作△ abc ≌ △def
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。通过练习得出对应边,对应角间的关系。
即全等三角形性质:全等三角形的对应边相等;
全等三角形的对应角相等。
练习1.2.3.4
小结:形状、大小相同的图形放在一起能够完全重合,能够完全重合的两个图
形叫做全等形。能够完全重合的两个三角形叫做全等三角形。
全等三角形性质:全等三角形的对应边相等;
全等三角形的对应角相等。
表示三角形全等时应注意什么?
数学全等三角形教案 9
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
全等三角形中严密的对应关系能够锻炼学生的观察力和推理能力,对它的深入研究有助于学生理解数学的本质,提升思维水平。
教学目标:
1.了解全等形、全等三角形的概念;理解全等三角形的性质; 2.能够准确找出全等三角形的对应元素,逐步培养学生的识图 能力;
3.让学生通过观察生活中的全等形和动手操作获得全等三角形 的体验,在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。
教学重难点及突破:
重点:全等三角形的概练和性质;
难点:能在全等变换中准确找到对应角、对应边。
教学突破:通过生活中的实例观察、感受全等形和全等三角形,动手操作、合作交流,亲身体验创造全等三角形,加深全等三角形的有关概念的理解。
教学准备:
1.教师准备:多媒体课件、剪刀、白纸等; 2.学生准备:白纸、剪刀等。
教学流程: 创设情境,引入新知→合作交流,探索新知→手脑并用,理解新知→合作交流,应用新知→课堂练习,巩固新知→师生互动,小结新知。
教学过程设计:
一、 创设情境,引入新课。
1、与学生谈话,努力走近学生之中。
2、游戏情景,引入新课 出示课件:大家来找茬游戏
引导:
1、观察两副图形在形状、大小、位置方面的共同点
2、两副图形形状、大小若相同该如何检验?
引导:什么样的图形叫做全等形?
定义:能够完全重合的两个图形叫做全等形; 列举生活中的实例(一百元人民币)感知全等形。
二、合作交流,探索新知。
1、手脑并用,感受新知
用剪刀在一张纸上剪出两个形状、大小完全一样的三角形,引出全等三角形教学。
2、观察诱导,探究新知。 (1)全等三角形相关概念
引导观察:课件操作演示两个三角形完全重合。 引导学生类比得出全等三角形定义;
中国人民邮政
能够完全重合的两个三角形叫做全等三角形 引导学生概括对应顶点、对应边、对应角定义;
全等三角形中,互相重合的顶点叫对应顶点。互相重合的边叫对应边。互相重合的角叫对应角。
(2)全等三角形的表达式
引导学生书写全等三角形的表达式:△ABC≌△DEF,读作 :△ABC全等于△DEF。
温馨提示:
①记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上 。 ②全等符号“≌”中“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同、大小相等,即全等。
引导学生感悟:三角形全等表达式充分体现出数学的秩序性和精确性,使用规范的表达式将有助于解决相关的问题
(3)全等三角形性质
引导学生观察并概括全等三角形性质
全等三角形的性质:全等三角形的对应边相等,对应角相等。 用几何语言表达全等三角形性质: ∵△ABC≌△DEF(已知) ∴AB=DE,AC=DF,BC=EF;
∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应边相等,对应角相等)
3、合作交流,探究新知 (1)手脑并用,体验新知
利用刚才剪下的两个全等三角形,在课桌上摆出不同形状的图形,再与同伴合作交流,探究如何通过操作其中一个三角形使它们再次重合?
通过课件展示引导学生理解只要两个三角形的形状大小相同,不管位置怎样变化,都能通过平移旋转翻折的方式使之重合。
(2)观察交流,探究新知
引导学生观察,交流探索规律。 在全等三角形中,一般是: 1.有公共边,则公共边为对应边; 2.有公共角,则公共角为对应角;
3.最大边与最大边(最小边与最小边) 为对应边;最大角与最大角(最小角与最小角)为对应角;
引导学生观察,交流发现规律。
针对所得的对应角、对应边情况引导学生总结:规范地写出全等三角形表达式具有重要的意义,根据表达式中字母的对应情况就能够,准确判断出全等三角形的对应顶点、对应边、对应角。
三、合作交流,应用新知。
例:如图, △ABO≌△DCO ,指出所有的对应边和对应角。
解:∵△ABO≌△DCO (已知) ∴AB=DC,BO=CO,AO=DO (全等三角形的对应边相等)
∠A=∠D,∠ABO=∠DCO,∠AOB=∠DOC (全等三角形的对应角相等) 变式:若上图中△ABC≌△DCB ,试写出这两个三角形中相等的边和相等的角。
解: ∵△ABC≌△DCB (已知) ∴AB=DC,BC=CB,AC=BD (全等三角形的对应边相等)
∠A=∠ D,∠ABC=∠DCB,∠ACB=∠DBC (全等三角形的对应角相等)
四、课堂练习,巩固新知。
(1)如图,△ABD≌△EBC,AB=3cm,BC=5cm, 求DE的长。
解:∵△ABD≌△EBC,且AB=3cm,BC=5cm (已知)
∴AB=EB=3cm,BC=BD=5cm (全等三角形的对应边相等) ∴DE=BD-EB=5-3=2cm
(2)如图,已知△ABC≌△ADE, 想一想: ∠ BAD= ∠ CAE吗?为什么?
解:相等,
∵△ABC≌△ADE(已知) ∴∠BAC=∠DAE(全等三角形对应角相等) ∴∠BAC—∠DAC=∠DAE—∠DAC(等式性质) 即∠BAC=∠DAE
五、师生互动,小结新知。
学习了这堂课你有哪些收获?并把它与同伴一起分享。
1、全等形的定义:能够完全重合的两个图形,叫做全等形。
2、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
3、全等三角形的性质:全等三角形对应边相等,对应角相等。
4、寻找全等三角形的对应边、对应角得规律。 (1)观察图形特点;
(2)观察表达式(对应关系)
六、布置作业。
课本P92习题15.1,第
2、4题。
七、教 后 感
······
板书设计:
15.1 全 等 三 角 形
定义:
表示 性质:
(学生板书)
数学全等三角形教案 10
教学目标
1、知道什么是全等形,全等三角形以及全等三角形对应的元素;
2、能用符号正确地表示两个三角形全等;
3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;
4、知道全等三角形的性质,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;
5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。通过文字阅读与图形阅读,构建数学知识,体验获取数学知识的过程,培养学生勇于创新,多方位审视问题的创造技巧。
[重点]
探究全等三角形的性质
[难点]
能用全等三角形的性质解决简单的问题,要求学生会确定全等三角形的对应元素及对全等三角形性质的理解。
教学流程安排
活动1 利用电脑投影观察图形,探究得出全等图形的概念
活动2 观察平移、翻折、旋转的两个图形
活动3 全等形的练习
活动4 观察两个平移的三角形所做的变化(课件演示)及动手剪两个全等的三角形。
活动5探究全等三角形的性质
(课件演示)
活动6全等三角形性质的运用
活动7小结,布置作业
观察、发现生活中图形的形状和大小相同的图形获得全等形的体验。
利用两个形状和大小相同的图形通过平移、翻折、旋转的实验,得出全等形的概念。
巩固全等性的概念
利用两个形状和大小相同的三角形通过平移
及自己动手作比较得出全等形三角形的概念。
通过图形的变换,形成对应的概念,获得全等形三角形的性质。
运用全等三角形性质解决问题
回顾反思,进一步理解和掌握全等三角形的概念及全等三角形的性质
教学过程设计
问题与情景
师生行为
设计意图
活动1
(1)观察下列图案(电脑显示不同的图案及教科书的图案),学生指出这些图案的形状和大小是否相同?
(2)你能再举出生活中的一些实际例子吗?
(3)按照教科书的要求,将一块三角形样板在纸板上,画下图形,照图形裁下纸板。观察裁下的纸板的形状、大小是否完全一样,能否完全重合?
教师演示课件,提出问题,学生思考、交流。
学生思考发表见解。
学生举出生活中的实例,教师对有创意的例子给予表扬及鼓励。
教师给出全等形的概念。
教师提出要求,学生动手操作,并做观察、回答问题。
本次活动中,教师应重点关注:
(1)
学生观察、发现全等形的能力,举出的离子是否是局限于某一范围,是否有新意;
(2)学生是否能够按要求裁下纸板,准确地重合纸板,并认真地进行观察。
运用贴近学生生活的图案激发学生探究的兴趣。
通过问题(1),引导学生从图形的形状与大小的角度去观察图形。
图形全等形、在生活中大量存在,创设这样的问题情境,引导学生有意注意,激发学生主动思考和联想;引导学生进一步联系生活,激发探究欲望。
通过动手实践,获得全等形的体验。
[活动2]
观察下列图形经过平移、翻折、旋转前后的形状和大小是否有所改变?
教师提出要求。
学生体会到图形的位置变化了,但经过平移、翻折、旋转依然全等。
培养学生对图形的识别能力。
[活动3]
对全等形知识的练习。
教师提问。
学生思考回答问题。
学生能准确快速的找出答案。
运用全等形的概念
[活动]4
问题
动手操作,将剪得的两个三角形纸板重合放在图中
△
ABC的位子上,试一试:
如:教科书图13.1、图13.2、
图13.3
观察△ABC在平移、翻折、旋转是否发生了改变?在图中的两个三角形全等吗?
教师提出要求。
学生用两个三角形纸板实践
教师用课件展示。
学生猜测,发表意见得出全等三角形的概念。
教师应关注:
(1)
对实践操作的理解。
(2)
是否能体会三角形的位置变化了,但经过平移、翻折、旋转后两个图形依然全等。
学生动手实践、分析,总结出图形变换的本质,加深对图形变换的理解。
[活动]5
问题
课件演示:
(1)
将两个三角形完全重合,观察并指出重合的顶点、边和角。
(2)
如何用数学符号表示两个三角形全等呢?
(3)
观察两个三角形找出对应边、对应角。
(4)观察重合的两个三角形对应边、对应角的关系。
教师课件演示提出问题。
学生实践交流得出结论。
教师给出对应顶点、对应边、对应角的概念并板书。
学生观察并回答问题。教师引导学生归纳总结得出三角形的性质并板书。
教师应关注:
(1)
对应顶点、对应边、对应角的概念的理解。
(2)
全等符号的书写。
(3)
全等三角形性质的理解。
在教师演示课件的过程中,学生建立对应的概念。
学生学会掌握全等三角形的表达方式,会使用全等符号。
学生掌握全等三角形的性质。
[活动]6
(1)
课件演示提出问题:
填一填:(如下图)
(2)
练一练:
如图,已知ΔOCA≌ΔOBD,
请说出它们的对应边和对应角。
C B
A D
(3)拓广探索:
如下图,矩形ABCD沿AM折叠,使D点落在BC上的N点处,如果AD=7cm,DM=5cm, ∠DAM=39°,则AN=___cm, NM=___cm, ∠NAB=___.
教师提出问题。
学生分组探究。
观察学生能否快速找出对应的边与角。
教师利用课件演示提问。
学生再一次对对应边与角的掌握。
教师提问。
学生独立思考回答并说出解题过程。
教师给出解题答案。
本次活动中,教师关注的重点:
(1)
学生能否快速准确的找出对应边、对应角。
(2)
学生对全等三角形的性质的理解。
(3)
同学之间的交流与活动参与程度。
学生掌握对应边、对应角的找法
进一步培养学生对图形的识别能力,加深学生对全等三角形性质的理解与掌握。
运用全等三角形的性质对较复杂图形进行探索,初步培养学生综合运用全等三角形性质的能力。
[活动]7
(1)
小结:谈谈本次活动的所获得的收获。
(2)
布置课后作业
教科书92页习题1。
学生分组总结。
教师布置作业,学生课后独立完成。
本次活动中,教师应重点关注:
(1)
对知识的梳理、总结的习惯。
(2)
小组合作意识
(3)
学生对本节内容的理解程度。
(4)
学生对全等三角形的情感认识。
加深学生对知识的理解,促进学生对课堂的反思。
巩固、提高、反思。使学生对知识的掌握。
全等三角形教学反思 11
根据教学大纲的课时安排,全等三角形这一内容需1课时。在本节课的学习中,为了完成教学任务,突出重点,突破难点,让学生真正达到教学目标,我采用了以下教法:“探究辅导法,类比法,讲练结合法,”具体说明如下:兴趣是学生最直接意识的学习动机。教学必须以学生兴趣为起点,由学生自己动手画图,并把两个三角形剪下叠和在一起,看是否能完全重合。培养学生养成在动手操作过程中仔细观察、勤于思考、善于发现的良好习惯。通过动手操作,使学生体验到两角和它们的夹边对应相等的两个三角形全等。
一个良好的开端就是成功的一半,一种好的引入方法可促使学生产生“欲罢不能”的强烈求知欲望。
三角形全等的条件必须满足三个条件,“边边边”在探索(1)已探索过,在探索(2)中主要是探索“角边角”、“角角边”两个识别三角形全等的条件。
本节的主要内容是全等三角形的另两个识别方法 AAS,在前面研究“角边角”识别方法的前提下,研究“角角边”对于学生并不困难,让学生通过直观感知、操作确认的方式体验数学结论的发现过程;在这节课的教学中,在探索比较简便的识别三角形全等方法的'时候,还利用一个非常重要的数学思想——转化思想,在教学时尽量让学生独自解决,其次在运用这两个方法判定两个三角形全等的时候,要求学生的识图能力和对这两个判定方法的熟练掌握。教科书安排用一个课时完成,经过今天的上课实际操作,从学生反馈的信息,对这节课反思如下:
1、学生在应用的时候,不会使用这两个判定,“角边角”、“角角边”不知怎样用,该用“角边角”就用到“角角边”, 该用“角角边”又用到“角边角”。
2、很好用两课时,第一课时探索“角边角”,第二课时探索“角角边”。运用这两个方法判定两个三角形全等的时候,一定要通过具体的图形分析来提高学生的识图能力和通过一定题量的训练对这两个判定方法的熟练掌握。
开放问题的设计,本节课让学生从练习中得到思维的发展,同时找到自己的不足,及时反馈,典型例题一题多问,设计环环相扣。
《全等三角形》说课稿 12
1.全等三角形的性质
2.找对应元素的方法
运动法:翻折、旋转、平移
位置法:对应角→对应边,对应边→对应角
经验:大边→大边,大角→大角。公共边是对应边,公共角是对应角
全等三角形教案 13
〖教学目标〗
◆1、探索两个直角三角形全等的条件。
◆2、掌握两个直角三角形全等的条件(hl).
◆3、了解角平分线的性质:角的内部,到角两边距离相等的点,在角平分线上,及其简单应用.
〖教学重点与难点〗
◆教学重点:直角三角形全等的判定的方法“hl”。
◆教学难点:直角三角形判定方法的说理过程。
〖教学过程〗
一、创设情境,引入新课:
教师演示一等腰三角形,沿底边上高裁剪,让同学们观察两个三角形是否全等?
二、合作学习:
1、回顾:判定两个直角三角形全等已经有哪些方法?
2、有斜边和一条直角边对应相等的两个三角形全等吗?如何会全等,教师可启发引导学生一起利用画图,叠合方法探索说明两个直角三角形全等的判定方法,可充分让学生想象。不限定方法。
“斜边和一条直角边对应相等的两个直角三角形全等(hl)。”
教师归纳出方法后,要学生注意两点:
“hl”是仅适用于rt△的特殊方法。
三、应用新知,巩固概念
例:已知:p是∠aob内一点,pd⊥oa,pe ⊥ob,d,e分别是垂足,且pd=pe,则点p在∠aob的平分线上,请说明理由。
分析:引导猜想可能存在的rt△;构造两个全等的rt△;要说明p在∠aob的平分线上,只要说明∠dop=∠eop
小结:角平分线的又一个性质:(判定一个点是否在一个角的平分线上的方法)
角的内部,到角的两边距离相等的点,在这个角的平分线上。
四、学生练习,巩固提高
练一练:课本p82课内练习
五、小结回顾,反思提高
(1)�
2、能正确表示两个全等三角形,能找出全等三角形的对应元素。
二、过程与方法
通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。
三、情感态度与价值观
通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。
教学重点
1、全等三角形的性质。
2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。 教学难点 正确寻找全等三角形的对应元素。
教学关键
通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。
课前准备:教师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个
教学过程设计
一、全等形和全等三角形的概念
(一)导课:
教师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。
(二)全等形的定义
象这样的图片,形状和大小都相同。你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析]
动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的? [板书:能够完全重合]
命名:给这样的图形起个名称————全等形。[板书:全等形]
刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。
(三)全等三角形的定义
动手操作2———制作一个和自己手里的三角形能够完全重合的三角形。 定义全等三角形:能够完全重合的两个三角形,叫全等三角形。
(四)出示学习目标
1、 知道什么是全等形,什么是全等三角形。
2、 能够找出全等三角形的对应元素。
3、会正确表示两个全等三角形。
4、掌握全等三角形的性质。
二、全等三角形的对应元素及表示
(一)自学课本:第1节内容(时间5分钟)可以在小组内交流。
(二)检测:
1、动手操作
以课本P91页的思考的操作步骤,抽三个学生上黑板完成(即把三角形平移、翻折、旋转后得到新的三角形)
思考:把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?
归纳:旋转前后的两个三角形,位置变化了,但形状大小都没有变,它们依然全等。
2、全等三角形中的对应元素
(以黑板上的图形为例,图一、图二、三学生独立找,集体交流)
(1)对应的顶点(三个)———重合的顶点
(2)对应边(三条)———重合的边
(3)对应角(三个)——— 重合的角
归纳:
方法一:全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
方法二:全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。 另外:有公共边的,公共边一定是对应边;有对顶角的,对顶角一定是对应角。
3、用符号表示全等三角形
抽学生表示图一、图二、三的全等三角形。
4、全等三角形的性质
思考:全等三角形的对应边、对应角有什么关系?为什么?
归纳:全等三角形的对应边相等、对应角相等。
请写出平移、翻折后两个全等三角形中相等的角,相等的边。
全等三角形的优秀教案 14
“全等三角形的条件”教案
“全等三角形的条件”教案 李春成 教学目标 知识与技能 (1)、经历探索三角形全等条件的过程,掌握三角形全等的“角边角”“角角边”判定方法 (2)、体会利用操作、归纳获得数学结论的过程。 (3)、培养学生的空间观念,推理能力,发展有条理地表达能力。 情感态度与价值观 (1)、经历和体验数学活动的过程以及数学在现实生活中的应用,树立学好数学的信心。 (2)、通过课堂学习培养学生敢于实践,勇于发现,大胆探索,合作创新的精神。 难点 三角形全等条件的探索,已知三角形两个角和一边画三角形 教学重点 经历对三角形全等条件的分析与画图验证的过程,能用“角边角”“角角边”去判定两个三角形全等。 教学方法 探索发现法、小组讨论法 教学过程 教学环节 教学内容 师生活动 设计意图及教师组织 创设问题情景,引入新知 一同学不小心打破了一块三角形的玻璃,如图:他应该拿哪一块回玻璃店做一块与原玻璃一模一样的? 教师利用教具提出问题,由学生讨论并提出自己的看法。 创设一个问题情境,激发学生学习的欲望和要求 建立模型,探索发现 1、动手探究 先任意画一个△ABC,再画一个△A1B1C1,使A1B1=AB,∠A1=∠A,∠B1=∠B(即使两角和它们的夹边对应相等)。把画好的△A1B1C1剪下,放到△ABC上,它们全等吗? (让学生通过画图了解,画第一边后,已经定好两个顶点,再画两个角,两个角已确定,那么三角形的第三个顶点也确定,所以这两个三角形全等) 2、探究的结果反映了什么规律?你能得出什么结论? (板书:两角和它们的夹边对应相等的两个三角形全等,可以简写成“角边角”或“ASA”) 3、动手做一做 在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC和△DEF全等吗?能利用角边角条件证明你的结论吗? 4、证明的结果得出什么结论? (板书:两个角和其中一个角的对边对应相等的两个三角形全等,可以简写成“角角边”或“AAS”) 5、你能利用上面的结论解决上课开始提出的问题吗? 1、由学生自己动手画图,并把两个三角形剪下叠和在一起,看是否能完全重合。 2、学生讨论,探究的'结果反映什么规律,学生回答后教师总结并板书。 3、先由学生猜想两个三角形是否全等,然后自己动手运用角边角条件证明,学生板书。 4、由学生叙述结论,教师强调“对应”。 5、由学生利用刚学的角边角的结论说明拿第3块回店里可以,并分别说明第1、2块为什么不可以,教师用课件演示。 培养学生养成在动手操作过程中仔细观察、勤于思考、善于发现的良好习惯。通过动手操作,使学生体验到两角和它们的夹边对应相等的两个三角形全等。 培养学生小组合作交流的好习惯。 由学生尝试用角边角证明两个三角形全等。 利用数学知识解决生活中的实际问题,渗透了数学来源于实际,又应用于实际的思想。 应用拓展,巩固新知 1、例3:已知,如图,D在AB上,E在AC上,AB=AC,∠B=∠C,求证:AD=AE 2、例3变式:已知,如上图,D在AB上,E在AC上,AB=AC,∠B=∠C,求证:BD=CE 3、如图,AB⊥BC,AD⊥DC,∠1=∠2,求证:AB=AD 4、如图,已知:AB∥CD,AB=CD,点B、E、F、D在同一直线上,∠A=∠C,求证:AE=CF 学生自学例3,教师给予提示:要证明两条线段相等,两条线段分别位于两个不同的三角形中则考虑证明两三角形全等,师生共同分析,教师把解题过程板书黑板。强调书写格式。 学生独立思考后,师生共同分析,由学生书写证明过程,教师强调书写证明格式,要求写出相应的理由 通过例题,使学生掌握运用“角边角”证明三角形全等的过程。教师板书,规范学生的书写格式,培养学生良好的学习习惯。 例题后的变式题和练习,检测学生对“角边角”和“角角边”的运用情况。 画一画,想一想 1、三角对应相等的两个三角形全等吗? 2、你能对三角形全等的判定方法做一个小结吗? 学生通过作图体验,教师巡视,并指导学生观察手上的三角板,大、小两个三角板的三个角都相等,但这两个三角板不全等,说明三角对应相等的两个三角形不一定全等。 学生分小组讨论,得出结论:证明两个三角形全等的条件至少有一条边,三个角对应相等的两个三角形不一定全等,三边对应相等的两个三角形一定全等,两边和它们的夹角对应相等的两个三角形一定全等,两边和其中一边的对角对应相等的两个三角形不一定全等,两角和它们的夹边对应相等的两个三角形全等,两个角和其中一个角的对边对应相等的两个三角形全等。 通过动手操作,使学生对三角对应相等的两个三角形不一定全等有更深刻的印象。 通过讨论、归纳,既有助于训练学生概括归纳能力,又有助于学生在归纳概括过程中把所学的三角形的判定方法条理化、系统化。 能力提高 如图:已知△ABC≌△A1B1C1,AD、A1D1分别是∠BAC和∠B1 A1 C1的角平分线。求证:AD= A1D1 师生共同分析后由学生书写解题过程,由一个写得较好的学生上黑板板书。 这是一道较难的题目,给学有余力的同学提供机会,便于他们更好地运用全等三角形的性质和判定解决问题。 小结 本节课你学习了什么?发现了什么?有什么收获?本节课还存在什么没有解决的问题? 在教师的引导下,回顾本节课对知识的探究过程,提炼数学思想,掌握数学知识 帮助学生梳理知识内容,回顾自己在本节课中的收获、困难和需要改进的地方。 分层作业 巩固提高 必做题:教科书104页第5、6、11题 选做题:教科书104页第12题 通过分层练习,使每一个学生在数学上都得到不同的发展 《三角形全等的条件》(第5课时) 教 学 目 标 知识技能 1.掌握“斜边、直角边”条件的内容. 2.初步运用“斜边、直角边”条件证明两个直角三角形全等. 数学思考 使学生经历作图,比较证明等探究过程,提高分析、作图、归纳、表达、逻辑推理能力. 解决问题 会运用“斜边、直角边”条件证明两个直角三角形全等. 情感态度 通过探究与交流,解决一些问题,获得成功的体验,进一步激发探究的积极性. 重点 掌握判定两个直角三角形全等的方法. 难点 熟练选择判定方法,判定两个直角三角形全等. 【教学过程设计】 问题与情景 师生行为 设计意图 活动1 问题 (1)舞台背景的形状是两个直角三角形,为了美观,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量,怎么办呢? (2)如果他带的测量工具只是一把卷尺时呢? (3)工作人员是这样做的,他测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”。你相信他的结论吗? 教师提出问题,引导学生回答. 学生分组讨论,得到不同的方法,教师引导并给予肯定,然后对工作人员提出的方法进行探究. 在本次活动中,教师应重点关注: (1)学生能否根据实际情况找出两个三角形全等的条件; (2)学生对已有知识掌握情况; (3)学生是否会观察图形,找出三角形全等的模型; (4)学生是否能积极的参与活动. 创设实际情景,激发探究欲望,明确探究方向,引入课题. 问题与情景 师生行为 设计意图 活动2 问题 任意画出一个Rt△ABC,使∠C=90°, 再画一个Rt△A?B?C?,使 ∠C?=90°,B?C?=BC,A?B?=AB(即使斜边和一条直角边对应相等) (1)你能画出满足条件的Rt△A?B?C?吗?应该怎样画? (2)把画好的Rt△A?B?C?剪下,放到Rt△ABC上。他们全等吗? . 教师先提问,明确探究任务,指导学生进行画图探究,获取“HL”的条件. 学生画图,再让学生发现存在的问题,最后给出正确的画法. 本次活动中,教师应重点关注: (1)学生是否在与同伴交流的基础上以小组为单位通过观察发现规律; (2)学生能否根据探究中发现的规律概括出结论“HL”; (3)在阐述结论时,学生的语言是否规范. 以学生画图为主线展开探究活动,注重“HL”条件的发生过程,和学生的亲身体验,从实践中获取“HL”条件,培养学生探索、发现、概括规律的能力.