《《分数与整数相乘》教案【7篇】》
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.为大家精心整理了《分数与整数相乘》教案【7篇】,希望能够帮助到大家。
教学重点 篇1
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.
《分数与整数相乘》教案 篇2
第二课时 分数与整数相乘
教学内容:P39-40例2,“练一练”,练习八第6-11题
教学目的:
1、让学生理解求一个数的几分之几是多少可以直接用乘法来计算
2、促使学生加深对相关数量关系的理解,提高解决简单实际问题的能力 教学重点难点:使学生理解求一个数的几分之几是多少可以用乘法来计算 教学资源:例2的图、小黑板 教学过程:
一、导入
1、出示例2 学生看图理解题意 说说题中两个分数的具体含义 明确:以10朵绸花为单位“1”,红花的朵数是10朵的1/2,绿花的朵数是10朵的2/5
二、探索
1、学生尝试解决第(1)个问题,求红花的朵数 学生交流解决方法,明确求红花的朵数可以用除法来计算,还可以用乘法计算 由此列出乘法算式,并让学生再次算出结果
2、解决第(2)个问题 先让学生在图中按要求圈一圈 理解:求绿花有多少朵,就是把10朵花平均分成5份,求这样的2份是多少 让学生已有的。知识来解答 交流:求10多的2/5是多少,也可以用乘法来计算
3、引导学生比较两种计算方法 使学生明白:10朵的2/5,也就是把10朵花平均分成5份,求这样的2份是多少 计算10*2/5时,要先约分,实际上也就是先用10/5,求出1份是多少,再乘2求出2份是多少
4、小结:求一个数的几分之几是多少,可以用乘法计算
5、“练一练” 第1题先让学生根据题意涂色,在列式计算 第2题先让学生理解题意,再填空
三、练习
1、练习八第6题 先让学生独立解答后再交流,比较,教案 分数与整数相乘,教案《教案 分数与整数相乘》。
体会到:求一个数的几分之几是多少与求几个相同数连加的和,都可以用乘法来计算
2、练习八第7题 学生先独立计算再交流
3、练习八第8题 学生独立解答并说说是怎样思考的
4、练习八第9题 先理解:表中的分数都是与四月份的天数比较后得到的,都以“30天”作为单位“1”。 估计天数的多少,可以直接比较分数几个分数的大小。 将计算结果与估计结果进行比较,看估计是否正确。
5、练习八第10题 先让学生看图计算,再组织学生说说三个问题有什么相同的地方。
6、练习八第11题 学生先独立解答,再进一步思考:如果不计算,你能比较出参加三项比赛的人数哪一项最多,哪一项最少吗?
四、全课总结
《分数与整数相乘》教案 篇3
教学目标:理解整数与分数相乘的意义和算理掌握整数与分数相乘的计算方法,并能正确地计算在操作、验证、归纳等数学活动中获得成功的体验
教学准备:12厘米、16厘米、20厘米、24厘米的'纸条若干;课件等
教学重点:整数与分数相乘的意义和计算方法
教学难点:
教学过程:
一、 复习引入
1. 复习分数乘整数的意义和计算方法。
2. 复习求一个数是另一个数的几分之几。
二、 展开
1. 操作活动。出示活动内容和小组活动要求
(1) 拿出纸条,先折出它的 ,再用涂色表示它的 的长度。
(2) 用尺量一量涂色部分的长度是多少厘米。
(3) 想一想可以怎样列式来验证你的结果。
(4) 组内交流你的想法
2. 汇报
(1) 因为9÷12= ,所以12× =9。
(2) 根据汇报得到算式:16× =12、20× =15、24× =18
(3) 仔细观察这四个算式,各表示什么意义?
(4) 这几个算式都有什么特点?
3. 揭题:今天我们就来研究整数乘分数
三、教学例1、2
1.教学例1
(1)出示例1。用线段图来表示数量关系
(2)汇报、交流线段图
(3)根据线段图列对应关系
(4)要求 所对应的具体量,就是求什么?
(5)列出算式
(6)如何计算(写出过程,说明算理)
2.:求一个数的几分之几用乘法计算
3.教学例2
(1)试列式
(2)比较算式的区别
(3)补充说明计算过程中能约分要先约分
4.分数和整数相乘的计算方法
四、巩固与提高
五、课堂
教学难点 篇4
引导学生总结分数乘整数的计算法则.
《分数与整数相乘》教案 篇5
教学目标:
1、知识目标:
使学生理解分数乘以整数的意义与整数乘法相同。
2、能力目标:掌握分数乘以整数的计算法则,能够正确地进行计算。
3、创新目标:使学生学会用不同的方法解决同一个问题
4、德育目标:培养学生的讨论意识和交流意识。
教学重点:本节的教学重点是使学生理解分数乘以整数意义,因此在教学中应注重让学生通过讨论发现并计算出方法并能正确运用先约分再相乘的方法进行计算。
教学难点:能正确运用先约分再相乘的方法进行计算。
教具准备:一个大西瓜。通过切西瓜的实物演示,帮助学生理解分数乘以整数的意义与整数乘法的意义完全相同。
教学过程:
一、导引目标
1、复习:整数乘法的意义是什么
2、思考:你能很快计算出下面算式的`结果吗?
+++++++++=
导出课题“分数乘以整数”师板书课题。
3、组织研究
(1)通过以上的观察和计算,你发现了什么?
(2)小组之间合作交流,自学例1。
讨论归纳分数乘以整数的意义和法则
二、创设条件
(一)指名到台上,按要求切西瓜。
1、将西瓜平均分成两份。问:
(1)两份合在一起,一共是几块?
(2)怎样列式计算?
+===1
×2===1
2、将西瓜平均分成四份。问:
(1)四份合在一起,一共是几块?
(2)怎样列式计算?
+++===1
×4===1
3、将西瓜平均分成八份。问:
(1)八份合在一起,一共是几块?
(2)怎样列式计算?
+++===1
×8===1
三、引导创新
计算×3=思考可以有几种计算方法,哪一种更简便一些?
四、反思
1、独立完成第2页的做一做。
谈谈自己本节课的收获,还有哪些知识没学明白。
教学过程 篇6
一、设疑激趣
(一)下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
(二)计算下面各题,说说怎样算?
+ + = + + =
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的`方法吗?请你自己试一试.
同学之间交流想法: + + = = 3× ×3=
×3这个算式表示什么?为什么可以这样计算?
教师板书: + + = ×3=
二、自主探索
(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
1.读题,说说 块是什么意思?
2.根据已有的知识经验,自己列式计算
三、交流、质疑
(一)学生汇报,并说一说你是怎样想的?
方法1: + + = = = (块)
方法2: ×3= + + = = = = (块)
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的.
区别:一种方法是加法,另一种方法是乘法.
教师板书: + + = ×3
(三)为什么可以用乘法计算?
加法表示3个 相加,因为加数相同,写成乘法更简便.
(四) ×3表示什么?怎样计算?
表示3个 的和是多少?
+ + = = = = ,用分子2乘3的积做分子,分母不变.
(五)提示:为计算方便,能约分的要先约分,然后再乘.
四、归纳、概括:
(一)结合 = ×3= 和 + + = ×3= ,说一说一个分数乘整数表示什么?
求几个相同加数的和的简便运算.
(二)分数乘整数怎样计算?
用分子和分母相乘的积做分子,分母不变
五、巩固、发展
(一)巩固意义
1.改写算式
+ + + =( )×( )
+ + + + + + + =( )×( )
2.只列式不计算:3个 是多少? 5个 是多少?
(二)巩固法则
1.计算(说一说怎样算)
×4 ×6 ×21 ×4 ×8
思考:为什么先约分再相乘比较简便?
2.应用题
(1)一个正方体的礼品盒,底面积是 平方米,要想将这个礼品盒包装起来,至
少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长 米的正方形的,如果为这几幅画
配上镜框,需要木条多少米?
(三)对比练习
1.一条路,每天修 千米,4天修多少千米?
2.一条路,每天修全路的 ,4天修全路的几分之几?
六、课后作业
(一) 的3倍是多少? 的10倍是多少?
(二)一个正方形的边长是 米,它的周长是多少米?
(三)一种大豆每千克约含油 千克,100千克大豆约含油多少千克?1吨大豆呢?
七、板书设计
分数乘整数
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.
例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
用加法算: + + = = = (块)
用乘法算: ×3= + + = = = = (块)
答:3人一共吃了 块.
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.
教学设计点评 篇7
1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为教学重点服务服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。
2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。