《八年级数学教案汇编十篇》
八年级数学教案汇编十篇
作为一名辛苦耕耘的教育工作者,时常要开展教案准备工作,编写教案助于积累教学经验,不断提高教学质量。怎样写教案才更能起到其作用呢?下面是小编精心整理的八年级数学教案10篇,希望能够帮助到大家。
八年级数学教案 篇1
一、教学目标:
1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.
2、会求一组数据的极差.
二、重点、难点和难点的突破方法
1、重点:会求一组数据的极差.
2、难点:本节课内容较容易接受,不存在难点.
三、课堂引入:
下表显示的是上海20xx年2月下旬和20xx年同期的每日最高气温,如何对这两段时间的气温进行比较呢?
从表中你能得到哪些信息?
比较两段时间气温的高低,求平均气温是一种常用的方法.
经计算可以看出,对于2月下旬的这段时间而言,20xx年和20xx年上海地区的平均气温相等,都是12度.
这是不是说,两个时段的气温情况没有什么差异呢?
根据两段时间的气温情况可绘成的折线图.
观察一下,它们有区别吗?说说你观察得到的结果.
用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围.用这种方法得到的差称为极差(range).
四、例习题分析
本节课在教材中没有相应的例题,教材P152习题分析
问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。
八年级数学教案 篇2
教学目标:
1.学会根据定义判别分式方程与整式方程,了解分式方程增根产生的原因,掌握验根的方法。
2.掌握可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解。
教学重点:去分母法解可化为一元一次方程或一元二次方程的分式方程。验根的方法。
教学难点:验根的方法。分式方程增根产生的原因。
教学准备:小黑板。
教学过程:
复习引入:下列方程中哪些分母中含有未知数?哪些分母中不含有未知数?
(1);(2);(3);(4);
(5);(6);(7);(8)。
讲授新课:
1.由上述归纳出分式方程的概念:只含有分式或整式,且分母里含有未知数的方程叫做分式方程。方程两边都是整式的方程叫做整式方程。
2.讨论分式方程的解法:
(1)复习解方程时,怎样去分母?
(2)讲解例1:解方程(按课文讲解)
归纳:解分式方程的基本思想:
分式方程整式方程
(3)讲解例2:解方程(按课文讲解)
归纳:在去分母时,有时可能产生不适合原方程的根,我们把它叫做增根。因此解分式方程必须检验,常把求得得根代入原方程的最简公分母,看它的值是否为0,若为0,则为增根,必须舍去;若不为0,则为原方程的根。
想一想:产生增根的原因是什么?
巩固练习:P1451t,2t。
课堂小结:什么叫做分式方程?
解分式方程时,为什么要检验?怎样检验?
布置作业:见作业本。
八年级数学教案 篇3
[教学目标]
知识与技能:
1.会用多边形公式进行计算。
2.理解多边形外角和公式。
过程与方法:
经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力.
情感态度与价值观:
让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。
[教学重点、难点与关键]
教学重点:多边形的内角和.的应用.
教学难点:探索多边形的内角和与外角和公式过程.
教学关键:应用化归的数学方法,把多边形问题转化为三角形问题来解决.
[教学方法]
本节课采用“探究与互动”的教学方式,并配以真的情境来引题。
[教学过程:]
(一)探索多边形的内角和
活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。
活动2:①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?②总结多边形内角和,你会得到什么样的结论?
多边形边数分成三角形的个数图形
内角和计算规律
三角形31180°(3-2)·180°
四边形4
五边形5
六边形6
七边形7
。。。。。。
n边形n
活动3:把一个五边形分成几个三角形,还有其他的`分法吗?
总结多边形的内角和公式
一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。
巩固练习:看谁求得又快又准!(抢答)
例1:已知四边形ABCD,∠A+∠C=180°,求∠B+∠D=?
(点评:四边形的一组对角互补,另一组对角也互补。)
(二)探索多边形的外角和
活动4:例2如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和.五边形的外角和等于多少?
分析:(1)任何一个外角同于他相邻的内角有什系?
(2)五边形的五个外角加上与他们相邻的内角所得总和是多少?
(3)上述总和与五边形的内角和、外角和有什么关系?
解:五边形的外角和=______________-五边形的内角和
活动5:探究如果将例2中五边形换成n边(n≥3),可以得到同样的结果吗?
也可以理解为:从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回到点A.最后再转回出发时的方向。由于在这个运动过程中身体共转动了一周,也就是说所转的各个角的和等于一个______角。所以多边形的外角和等于_________。
结论:多边形的外角和=___________。
练习1:如果一个多边形的每一个外角等于30°,则这个多边形的边数是_____。
练习2:正五边形的每一个外角等于________,每一个内角等于_______。
练习3.已知一个多边形,它的内角和等于外角和,它是几边形?
(三)小结:本节课你有哪些收获?
(四)作业:
课本P84:习题7.3的2、6题
附知识拓展—平面镶嵌
(五)随堂练习(练一练)
1、n边形的内角和等于__________,九边形的内角和等于___________。
2、一个多边形当边数增加1时,它的内角和增加()。
3、已知多边形的每个内角都等于150°,求这个多边形的边数?
4、一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()
A:360°B:540°C:720°D:900°
5.已知一个多边形,它的内角和等于外角和的2倍,求这个多边形的边数?
八年级数学教案 篇4
一、教学目标
1.使学生根据分数的通分法则及分式的基本性质,分析、归纳出分式的通分法则,并能熟练掌握通分运算。
2.使学生理解和掌握分式和减法法则,并会应用法则进行分式加减的运算。
3.使学生能够灵活运用分式的有关法则进行分式的四则混合运算。
4.引导学生不断小结运算方法和技巧,提高运算能力。
二、教学重点和难点
1.重点:分式的加减运算。
2.难点:异分母的分式加减法运算。
三、教学方法
启发式、分组讨论。
四、教学手段
幻灯片。
五、教学过程
(一)引入
1.如何计算:2.如何计算:3.若分母不同如何计算?如:
(二)新课
1.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
2.通分的依据:分式的基本性质。
3.通分的关键:确定几个分式的公分母。
通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
例1通分:
(1)解:∵最简公分母是,
小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数。
(2)解:
例2通分:
(1)解:∵最简公分母的是2x(x+1)(x—1),
小结:当分母是多项式时,应先分解因式。
(2)解:将分母分解因式:∴最简公分母为2(x+2)(x—2),
练习:教材P,79中1、2、3。
(三)课堂小结
1.通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。
2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。
3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。
八年级数学教案 篇5
教学目标:
1. 掌握三角形内角和定理及其推论;
2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态
5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
教学重点:
三角形内角和定理及其推论。
教学难点:
三角形内角和定理的证明
教学用具:
直尺、微机
教学方法:
互动式,谈话法
教学过程:
1、创设情境,自然引入
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。
问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?
问题2 你能用几何推理来论证得到的关系吗?
对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)
新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。
2、设问质疑,探究尝试
(1)求证:三角形三个内角的和等于
让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。
问题1 观察:三个内角拼成了一个
什么角?问题2 此实验给我们一个什么启示?
(把三角形的三个内角之和转化为一个平角)
问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?
其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。
(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?
学生回答后,电脑显示图表。
(3)三角形中三个内角之和为定值
,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?
问题2 三角形一个外角与它不相邻的两个内角有何关系?
问题3 三角形一个外角与其中的一个不相邻内角有何关系?
其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。
这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。
3、三角形三个内角关系的定理及推论
引导学生分析并严格书写解题过程
八年级数学教案 篇6
教学目标:
1。经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;
2。索并掌握平行四边形的性质,并能简单应用;
3。在探索活动过程中发展学生的探究意识。
教学重点:平行四边形性质的探索。
教学难点:平行四边形性质的理解。
教学准备:多媒体课件
教学过程
第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。)
1。小组活动一
内容:
问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。
(1)你拼出了怎样的四边形?与同桌交流一下;
(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。
2。小组活动二
内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?
第二环节 探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)
小组活动3:
用 一张半透明的纸复制你刚才画的平行四边形,并将复制 后的四边形绕一个顶点旋转180,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?
(1)让学生动手操作、复制、旋转 、观察、分析;
(2)学生交流、议论;
(3)教师利用多媒体展示实践的过程。
第三环节 推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。)
实践 探索内容
(1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。
(2)可以通过推理来证明这个结论,如图连结AC。
∵ 四边形ABCD是平行四边形
AD // BC, AB // CD
2,4
△AB C和△CDA中
1
AC=C A
4
△ABC≌△CDA(ASA)
AB=DC, AD=CB,B
又∵2
4
3=4
即BAD=DCB
第四环节 应用巩固 深化提高(10分钟,通过议一议,练一练,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。)
1。活动内容:
(1)议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗?
A(学生思考、议论)
B总结归纳:可以确定其它三个内角的度数。
由平行四边形对 边分边平行 得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。
(2)练一练(P99随堂练习)
练1 如图:四边形ABCD是平行四边形。
(1)求ADC、BCD度数
(2)边AB、BC的度数、长度。
练2 四边形ABCD是平行四边形
(1)它的四条边中哪些 线段可以通过平移相到得到?
(2)设对角线AC、BD交于O;AO与OC、BO与OD有何关系?说说理由。
归 纳:平行四边形的性质:平行四边形的对角线互相平分。
第五环节 评价反思 概括总结(8分钟,学生踊跃谈感受和收获)
活动内容
师生相互交流、反思、总结。
(1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。
(2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点?
(3)本节学习到了什么?(知识上、方法上)
考一考:
1。 ABCD中,B=60,则A= ,C= ,D= 。
2。 ABCD中,A比B大20,则C= 。
3。 ABCD中,AB=3,BC=5,则AD= CD= 。
4。 ABCD中,周长为40cm,△ABC周长为25,则对角线AC=( )cm。
布置作业
课本习题4。1
A组(学优生)1 、2
B组(中等生)1、2
C组(后三分之一生)1、2
八年级数学教案 篇7
教学任务分析
教学目标
知识技能
一、类比同分母分数的加减,熟练掌握同分母分式的加减运算.
二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法.
数学思考
在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力.
解决问题
一、会进行同分母和异分母分式的加减运算.
二、会解决与分式的加减有关的简单实际问题.
三、能进行分式的加、剪、乘、除、乘方的混合运算.
情感态度
通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点.
重点
分式的加减法.
难点
异分母分式的加减法及简单的分式混合运算.
教学流程安排
活动流程图
活动内容和目的
活动1:问题引入
活动2:学习同分母分式的加减
活动3:探究异分母分式的加减
活动4:发现分式加减运算法则
活动5:巩固练习、总结、作业
向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的学习热情.
类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算.
回忆异分母分数的加减,使学生归纳异分母分式的加减的方法.
通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解.
通过练习、作业进一步巩固分式的运算.
课前准备
教具
学具
补充材料
课件
教学过程设计
问题与情境
师生行为
设计意图
[活动1]
1.问题一:比较电脑与手抄的录入时间.
2.问题二;帮帮小明算算时间
所需时间为,
如何求出的值?
3.这里用到了分式的加减,提出本节课的主题.
教师通过课件展示问题.学生积极动脑解决问题,提出困惑:
分式如何进行加减?
通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情.
[活动2]
1.提出小学数学中一道简单的分数加法题目.
2.用课件引导学生用类比法,归纳总结同分母分式加法法则.
3.教师使用课件展示[例1]
4.教师通过课件出两个小练习.
教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则.
学生在教师的引导下,探索同分母分式加减的运算方法.
通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的.注意事项.
由两个学生板书自主完成练习,教师巡视指导学生练习.
运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识.
师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心.
让学生进一步体会同分母分式的加减运算.
[活动3]
1.教师以练习的形式通过“自我发展的平台”,向学生展示这样一道题.
2.教师提出思考题:
异分母的分式加减法要遵守什么法则呢?
教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的加减.
教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路.
由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣.
通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣.
[活动4]
1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则.
2.教师使用课件展示[例2]
3.教师通过课件出4个小练习.
4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知总电阻R与R1R2满足关系式 ;
试用含有R1的式子表示总电阻R
5.教师使用课件展示[例4]
教师提出要求,由学生说出分式加减法则的字母表示形式.
通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程.
教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成.
教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系.
分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细.
由此练习学生的抽象表达能力,让学生体会数学符号语言的精练.
让学生体会运用的公式解决问题的过程.
锻炼学生运用法则解决问题的能力,既准确又有速度.
提高学生的计算能力.
通过分式在物理学中的应用,加强了学科之间的联系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣.
提高学生综合应用知识的能力.
[活动5]
1.教师通过课件出2个分式混合运算的小练习.
2.总结:
a)这节课我们学习了哪些知识?你能说一说吗?
b)⑴方法思路;
c)⑵计算中的主意事项;
d)⑶结果要化简.
3.作业:
a)教科书习题16.2第4、5、6题.
学生练习、巩固.
教师巡视指导.
学生完成、交流.,师生评价.
教师引导学生回忆本节课所学内容,学生回忆交流,师生共同补充完善.
教师布置作业.
锻炼学生运用法则进行运算的能力,提高准确性及速度.
提高学生归纳总结的能力.
八年级数学教案 篇8
教材分析
本章属于“数与代数”领域,整式的乘除运算和因式分解是基本而重要的代数初步知识,在后续的数学学习中具有重要的意义。本章内容建立在已经学习了有理数的运算,列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上,而本节课的知识是学习本章的基础,为后续章节的学习作铺垫,因此,学得好坏直接关乎到后续章节的学习效果。
学情分析
本节课知识是学习整章的基础,因此,教学的好坏直接影响了后续章节的学习。学生在学习本章前,已经掌握了用字母表示数,列简单的代数式,掌握了乘方的意义及相关概念,并且本节课的知识相对较简单,学生比较容易理解和掌握,但是教师在教学中要注意引导学生导出同底数幂的乘法的运算性质的过程是一个由特殊到一般的认识过程,并且注意导出这一性质的每一步的根据。
从学生做练习和作业来看,大部分学生都已经掌握本节课的知识,并且掌握的很好,但是还是存在一些问题,那就是符号问题,这方面还有待加强。
教学目标
1、知识与技能:
掌握同底数幂乘法的运算性质,能熟练运用性质进行同底数幂乘法运算。
2、过程与方法:
(1)通过同底数幂乘法性质的推导过程,体会不完全归纳法的运用,进一步发展演绎推理能力;
(2)通过性质运用帮助学生理解字母表达式所代表的数量关系,进一步积累选择适当的程序和算法解决用符号所表达问题的经验。
3、情感态度与价值观:
(1)通过引例问题情境的创设,诱发学生的求知欲,进一步认识数学与生活的密切联系;
(2)通过性质的推导体会“特殊。
八年级数学教案 篇9
教学目标
①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力。
②理解整式除法的算理,发展有条理的思考及表达能力。
教学重点与难点
重点:整式除法的运算法则及其运用。
难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。
教学准备
卡片及多媒体课件。
情境引入
教科书第161页问题:木星的质量约为1。90×1024吨,地球的质量约为5。98×1021吨,你知道木星的质量约为地球质量的多少倍吗?
重点研究算式(1。90×1024)÷(5。98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型。
注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程。
探究新知
(1)计算(1。90×1024)÷(5。98×1021),说说你计算的根据是什么?
(2)你能利用(1)中的方法计算下列各式吗?
8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。
(3)你能根据(2)说说单项式除以单项式的运算法则吗?
注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述。
单项式的除法法则的推导,应按从具体到一般的步骤进行。探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展。重视算理算法的渗透是新课标所强调的。
归纳法则
单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
注:通过总结法则,培养学生的概括能力,养成用数学语言表达自己想法的数学学习习惯。
应用新知
例2计算:
(1)28x4y2÷7x3y;
(2)—5a5b3c÷15a4b。
首先指明28x4y2与7x3y分别是被除式与除式,在这儿省去了括号。对本例可以采用学生口述,教师板书的形式完成。口述和板书都应注意展示法则的应用,计算过程要详尽,使学生尽快熟悉法则。
注:单项式除以单项式,既要对系数进行运算,又要对相同字母进行指数运算,同时对只在一个单项式里含有的幂要加以注意,这些对刚刚接触整式除法的学生来讲,难免会出现照看不全的情况,所以更应督促学生细心解答问题。
巩固新知教科书第162页练习1及练习2。
学生自己尝试完成计算题,同桌交流。
注:在独立解题和同伴的相互交流过程中让学生自己去体会法则、掌握法则,印象更为深刻,也有助于培养学生良好的思维习惯和主动参与学习的习惯。
作业
1。必做题:教科书第164页习题15。3第1题;第2题。
2。选做题:教科书第164页习题15。3第8题
八年级数学教案 篇10
知识要点
1、函数的概念:一般地,在某个变化过程中,有两个 变量x和 y,如果给定一个x值,
相应地就确定了一个y值,那么称y是x的函数,其中x是自变量,y是因变量。
2、一次函数的概念:若两个变量x,y间的关系式可以表示成y=kx+b(k0,b为常数)的形式,则称y是x的一次函数, x为自变量,y为因变量。特别地,当b=0 时,称y 是x的正比例函数。正比例函数是一次函数的特殊形式,因此正比例函数都是一次函数,而 一次函 数不一定都是正比例函数.
3、正比例函数y=kx的性质
(1)、正比例函数y=kx的图象都经过
原点(0,0),(1,k)两点的一条直线;
(2)、当k0时,图象都经过一、三象限;
当k0时,图象都经过二、四象限
(3)、当k0时,y随x的增大而增大;
当k0时,y随x的增大而减小。
4、一次函数y=kx+b的性质
(1)、经过特殊点:与x轴的交点坐标是 ,
与y轴的交点坐标是 .
(2)、当k0时,y随x的增大而增大
当k0时,y随x的增大而减小
(3)、k值相同,图象是互相平行
(4)、b值相同,图象相交于同一点(0,b)
(5)、影响图象的两个因素是k和b
①k的正负决定直线的方向
②b的正负决定y轴交点在原点上方或下方
5.五种类型一次函数解析式的确定
确定一次函数的解析式,是一次函数学习的重要内容。
(1)、根据直线的解析式和图像上一个点的坐标,确定函数的解析式
例1、若函数y=3x+b经过点(2,-6),求函数的解析式。
解:把点(2,-6)代入y=3x+b,得
-6=32+b 解得:b=-12
函数的解析式为:y=3x-12
(2)、根据直线经过两个点的坐标,确定函数的解析式
例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),
求函数的表达式。
解:把点A(3,4)、点B(2,7)代入y=kx+b,得
,解得:
函数的解析式为:y=-3x+13
(3)、根据函数的图像,确定函数的解析式
例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x
(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x
(小时)之间的函数关系式,并且确定自变量x的取值范围。
(4)、根据平移规律,确定函数的解析式
例4、如图2,将直线 向上平移1个单位,得到一个一次
函数的图像,那么这个一次函数的解析式是 .
解:直线 经过点(0,0)、点(2,4),直线 向上平移1个单位
后,这两点变为(0,1)、(2,5),设这个一次函数的解析式为 y=kx+b,
得 ,解得: ,函数的解析式为:y=2x+1
(5)、根据直线的对称性,确定函数的解析式
例5、已知直线y=kx+b与直线y=-3x+6关于y轴对称,求k、b的值。
例6、已知直线y=kx+b与直线y=-3x+6关于x轴对称,求k、b的值。
例7、已知直线y=kx+b与直线y=-3x+6关于原点对称,求k、b的值。
经典训练:
训练1:
1、已知梯形上底的长为x,下底的长是10,高是 6,梯形的面积y随上底x的变化而变化。
(1)梯形的面积y与上底的长x之间的关系是否是函数关系?为什么?
(2)若y是x的函数,试写出y与x之间的函数关系式 。
训练2:
1.函数:①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,
一次函数有___ __;正比例函数有____________(填序号).
2.函数y=(k2-1)x+3是一次函数,则k的取值范围是( )
A.k1 B.k-1 C.k1 D.k为任意实数.
3.若一次函数y=(1+2k)x+2k-1是正比 例函数,则k=_______.
训练3:
1 . 正比例函数y=k x,若y随x的增大而减 小,则k______.
2. 一次函数y=mx+n的图象如图,则下面正确的是( )
A.m0 B.m0 C.m0 D.m0
3.一次函数y=-2x+ 4的图象经过的象限是____,它与x轴的交 点坐标是____,与y轴的交点坐标是____.
4.已知一次函 数y =(k-2)x+(k+2),若它的图象经过原点,则k=_____;
若y随x的增大而增大,则k__________.
5.若一次函数y=kx-b满足kb0,且函数值随x的减小而增大,则它的大致图象是图中的( )
训练4:
1、 正比例函数的图象经过点A(-3,5),写出这正比例函数的解析式.
2、已知一次函数的图象经过点(2,1)和(-1,-3).求此一次函数的解析式 .
3、一次函数y=kx+b的图象如上图所示,求此一次函数的解析式。
4、已知一次函数y=kx+b,在x=0时的值为4,在x=-1时的值为-2,求这个一次函数的解析式。
5、已知y-1与x成正比例,且 x=-2时,y=-4.
(1)求出y与x之间的函数关系式;
(2)当x=3时,求y的值.
一、填空题(每题2分,共26分)
1、已知 是整数,且一次函数 的图象不过第二象限,则 为 .
2、若直线 和直线 的交点坐标为 ,则 .
3、一次函数 和 的图象与 轴分别相交于 点和 点, 、 关于 轴对称,则 .
4、已知 , 与 成正比例, 与 成反比例,当 时 , 时, ,则当 时, .
5、函数 ,如果 ,那么 的取值范围是 .
6、一个长 ,宽 的矩形场地要扩建成一个正方形场地,设长增加 ,宽增加 ,则 与 的函数关系是 .自变量的取值范围是 .且 是 的 函数.
7、如图 是函数 的一部分图像,(1)自变量 的取值范围是 ;(2)当 取 时, 的最小值为 ;(3)在(1)中 的取值范围内, 随 的增大而 .
8、已知一次函数 和 的图象交点的横坐标为 ,则 ,一次函数 的图象与两坐标轴所围成的三角形的面积为 ,则 .
9、已知一次函数 的图象经过点 ,且它与 轴的交点和直线 与 轴的交点关于 轴对称,那么这个一次函数的解析式为 .
10、一次函数 的图象过点 和 两点,且 ,则 , 的取值范围是 .
11、一次函数 的图象如图 ,则 与 的大小关系是 ,当 时, 是正比例函数.
12、 为 时,直线 与直线 的交点在 轴上.
13、已知直线 与直线 的交点在第三象限内,则 的取值范围是 .
二、选择题(每题3分,共36分)
14、图3中,表示一次函数 与正比例函数 、 是常数,且 的图象的是( )
15、若直线 与 的交点在 轴上,那么 等于( )
A.4 B.-4 C. D.
16、直线 经过一、二、四象限,则直线 的图象只能是图4中的( )
17、直线 如图5,则下列条件正确的是( )
18、直线 经过点 , ,则必有( )
A.
19、如果 , ,则直线 不通过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
20、已知关于 的一次函数 在 上的函数值总是正数,则 的取值范围是
A. B. C. D.都不对
21、如图6,两直线 和 在同一坐标系内图象的位置可能是( )
图6
22、已知一次函数 与 的图像都经过 ,且与 轴分别交于点B, ,则 的面积为( )
A.4 B.5 C.6 D.7
23、已知直线 与 轴的交点在 轴的正半轴,下列结论:① ;② ;③ ;④ ,其中正确的个数是( )
A.1个 B.2个 C.3个 D.4个
24、已知 ,那么 的图象一定不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
25、如图7,A、B两站相距42千米,甲骑自行车匀速行驶,由A站经P处去B站,上午8时,甲位于距A站18千米处的P处,若再向前行驶15分钟,使可到达距A站22千米处.设甲从P处出发 小时,距A站 千米,则 与 之间的关系可用图象表示为( )
三、解答题(1~6题每题8分,7题10分,共58分)
26、如图8,在直角坐标系内,一次函数 的图象分别与 轴、 轴和直线 相交于 、 、 三点,直线 与 轴交于点D,四边形OBCD(O是坐标原点)的面积是10,若点A的横坐标是 ,求这个一次函数解析式.
27、一次函数 ,当 时,函数图象有何特征?请通过不同的取值得出结论?
28、某油库有一大型储油罐,在开始的8分钟内,只开进油管,不开出油管,油罐的油进至24吨(原油罐没储油)后将进油管和出油管同时打开16分钟,油罐内的油从24吨增至40吨,随后又关闭进油管,只开出油管,直到将油罐内的油放完,假设在单位时间内进油管与出油管的流量分别保持不变.
(1)试分别写出这一段时间内油的储油量Q(吨)与进出油的时间t(分)的函数关系式.
(2)在同一坐标系中,画出这三个函数的图象.
29、某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月不超过100度时,按每度0.57元计费;每月用电超过100度时,其中的100度按原标准收费;超过部分按每度0.50元计费.
(1)设用电 度时,应交电费 元,当 100和 100时,分别写出 关于 的函数关系式.
(2)小王家第一季度交纳电费情况如下:
月份 一月份 二月份 三月份 合计
交费金额 76元 63元 45元6角 184元6角
问小王家第一季度共用电多少度?
30、某地上年度电价为0.8元,年用电量为1亿度.本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至 元,则本年度新增用电量 (亿度)与( 0.4)(元)成反比例,又当 =0.65时, =0.8.
(1)求 与 之间的函数关系式;
(2)若每度电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量(实际电价-成本价)]
31、汽车从A站经B站后匀速开往C站,已知离开B站9分时,汽车离A站10千米,又行驶一刻钟,离A站20千米.(1)写出汽车与B站距离 与B站开出时间 的关系;(2)如果汽车再行驶30分,离A站多少千米?
32、甲乙两个仓库要向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥,两库到A,B两地的路程和运费如下表(表中运费栏元/(吨、千米)表示每吨水泥运送1千米所需人民币)
路程/千米 运费(元/吨、千米)
甲库 乙库 甲库 乙库
A地 20 15 12 12
B地 25 20 10 8
(1)设甲库运往A地水泥 吨,求总运费 (元)关于 (吨)的函数关系式,画出它的图象(草图).
(2)当甲、乙两库各运往A、B两地多少吨水泥时,总运费最省?最省的总运费是多少?