《变频器论文【最新6篇】》
《变频器论文【最新6篇】》由精心整编,希望在【变频器论文】的写作上带给您相应的帮助与启发。
变频器论文 篇1
【论文摘要】:文章对变频器常见干扰故障进行了分析总结,并提出了相应的解决对策。
1.引言
变频器作为一种高效节能的电机调速装置,因其较高的性能价格比,在工厂得到了越来越广泛的应用。众所周知,变频器是由整流电路、滤波电路、逆变电路组成。其中整流电路和逆变电路中均使用了半导体开关元件,在控制上则采用的是PWM控制方式,这就决定了变频器的输入、输出电压和电流除了基波之外,还含有许多的高次谐波成分。这些高次谐波成分将会引起电网电压波形的畸变,产生无线电干扰电波,它们对周边的设备、包括变频器的驱动对象--电动机带来不良的影响。同时由于变频器的使用,电网电源电压中会产生高次谐波的成分,电网电源内有晶闸管整流设备工作时,会引导电源波形产生畸形。另外,由于遭受雷击或电源变压器的开闭,电功率用电器的开闭等,产生的浪涌电压,也将使电源波形畸变,这种波形畸变的电网电源给变频器供电时,又将对变频器产生不良影响。文章对于上述现象进行了分析并提出了降低这些不良影响的措施。
2.外界对变频器的干扰
供电电源对变频器的干扰主要有过压、欠压、瞬时掉电;浪涌、跌落;尖峰电压脉冲;射频干扰。变频器的供电电源受到来自被污染的交流电网的谐波干扰后若不加处理,电网噪声就会通过电网的电源电路干扰变频器。变频器的输入电路侧,是将交流电压变成直流电压。这就是常称为"电网污染"的整流电路。由于这个直流电压是在被滤波电容平滑之后输出给后续电路的,电源供给变频器的实际上是滤波电容的充电电流,这就使输入电压波形产生畸变。
(1)电网中存在各种整流设备、交直流互换设备、电子电压调整设备,非线性负载及照明设备等大量谐波源
电源网络内有这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其它设备产生危害的干扰。例如:当供电网络内有较大容量的晶闸管换流设备时,因晶闸管总是在每相半周期内的部分时间内导通,故容易使网络电压出现凹口,波形严重失真。它使变频器输入侧的整流电路有可能因出现较大的反向回复电压而受到损害,从而导致输入回路击穿而烧毁。
(2)电力补偿电容对变频器的干扰
电力部门对用电单位的功率因数有一定的要求,为此,许多用户都在变电所采用集中电容补偿的方法来提高功率因数。在补偿电容投入或切出的暂态过程中,网络电压有可能出现很高的峰值,其结果是可能使变频器的整流二极管因承受过高的反向电压而击穿。
(3)电源辐射传播的干扰信号
电磁干扰(EMI),是外部噪声和无用信号在接收中所造成的电磁干扰,通常是通过电路传导和以场的形式传播的[2]即以电磁波方式向空中幅射,其辐射场强取决于干扰源的电流强度、装置的等效辐射阻抗以及干扰源的发射频率。
对于(1)、(2)两项产生的干扰抑制可以在变频器输入电路中,串入交流电抗器,它对于基波频率下的阻抗是微不足道的。但对于频率较高的高频干扰信号来说,呈现很高的阻抗,能有效地抑制干扰的作用。对于(3)项的干扰信号主要通过吸收方式来削弱。变频器电源输入端,通常都加有吸收电容。也可以再加上专用的"无线电干扰滤器",来进一步削弱干扰信号。
3.变频器对周边设备的干扰及对策
上面已经讲过变频器能使输入电源电压产生高次谐波。同时,变频器的输出电压和电流除了基波之外,还含有许多高次谐波的成分,它们将以各种方式把自己的能量传播出去,这些高次谐波对周围设备带来不良的影响。其中,供电电源的畸变,使处于同一供电电源的其他设备出现误动作,过热、噪声和振动;产生的无线干扰电波给变频器周围的电视机、收音机、手机等无线电接收装置带来干扰,严重时不能正常工作;对变频器的外部控制信号产生干扰,这些控制信号受干扰后,就不能准确、正常地控制变频器运行,使被变频器驱动的电动机产生噪音,振动和发热现象。
(1)对接在同一电源设备带来的干扰
当变频器的容量较大时,将使网络电压产生畸变,通过阻抗耦合或接地回路耦合将干扰传入其它电路。消除或削弱对接在同一电源的设备带来的干扰,可以将变频器的输入端串入交流电抗器,在变频器的整流侧插入直流电抗器。也可以在变频器电源输入端插入滤波器,如下图1所示:
LC滤波器是被动滤波器,它由电抗和电容组成对高次谐波的共振回路,从而达到吸收高次谐波的目的。有源滤波器的工作原理是:通过对电流中高次谐波进行检测,并根据检测结果,输入与高次谐波成分相位相反的电流来削弱高次谐波的目的。
(2)对于产生的无线电干扰波
目前,变频器绝大部分是采用PWM控制方法。变频器输出信号是高频的开关信号,在变频器的输出电压、输出电流中含有高次谐波,通过静电感应和电磁感应,产生无线电干扰波。这些干扰波有的通过电线传导,有些辐射至空中的电磁波和电场直接辐射。而辐射场中的金属物体还可能形成二次辐射。同样,变频器外部的辐射也会干扰变频器的正常工作。
电线传导的无线电干扰波的抑制,可以采用噪声滤波变压器,对高次谐波形成绝缘;插入电抗器,以提高对高次谐波成分的阻抗,在变频器的输入端插入滤波器。
辐射无线电干扰波的抑制,较传导无线电干扰波要困难一些。这种无线电干扰的大小,决定于安装变频器设备本身的结构,和电动机电缆线长短等许多因素有关。可以尽量缩短电动机电线,电线采用双绞措施,减少阻抗;变频器输入、输出线装入铁管屏蔽;将变频器机壳良好地接;变频器输入、输出端串接电抗器,插入滤波器。
(3)对于产生的噪声干扰
由于变频器采用了PWM控制方式,变频器的输出电压波形不是正弦波,通过电动机的电流也难免含有许多谐波。变频器输出的谐波频率与转子固有频率的共振,在转子固有频率附近的噪声增大,变频器输出的谐波分量使铁心、机壳、轴架等谐波在其固有频率附近的噪声增大。因此,利用变频器对电动机进行调速控制时,电动机绕组和铁芯由于谐波的成分而产生噪声。
下图2是电动机采用变频器驱动和采用电网电源直接驱动时的噪音比较。通常,采用变频器对电动机进行驱动时,电动机产生的噪音要比电网电源直接驱动产生的噪音高出5~10dB。对于噪音的抑制可以采取的措施为:
①选用以IGBT等为逆变模块的载波频率较高的低噪音变频器。选用变频器专用电动机,在变频器与电动机之间串入电抗器,以减少PWM控制方式产生的高次谐波。
②在变频器与电动机之间插入可以将输出波形转换成正弦波的滤波器。
③选用低噪音的电抗器。
(4)对于产生的振动干扰
采用变频器对电动机进行调速控制时,同噪音相同的原因,会使电动机产生振动。特别是较低阶的高次谐波所产生的脉动转矩,给电动机的转矩输出带来较大的振动。若机械系统与这种振动发生共振时,其振动就更为严重。
通常可以采取以下措施减小振动:
①强化机械结构的刚性,将刚性连接改为强性连接。
②在变频器与电动机之间串入电抗器
③降低变频器的输出压频比。
④改变变频器的载波频率。
在变频器对电动机进行调速过程中,如果调速范围较大时,应先测到机械系统的共振频率,然后利用变频器的频率跳跃功能,避开这些共振频率。如果转距有余量,可以将U/f给定小些。
(5)对于导致控制部件电动机过热的干扰
采用变频器对电动机进行调速控制,由于高次谐波的原因,即使是对同一电动机,在同一频率下运行,电动机也将增加5%~10%的电流。电动机温度自然会提高。此外,普通电动机的冷却风扇安装在电动机轴上的,在连续进行低速运行时,由于自身的冷却风扇的冷却能力不足,而出现电动机过热现象。
电动机过热的对策有以下几种:
①为电动机另配冷却风扇,改自冷式为他冷式。增加低速运行时的冷却能力。
②选用较大容量的电动机。
③改用变频器专用电动机。
④改变调速方案,避免电动机连续低速运行。
随着工厂电气自动化程度的提高,各种干扰也日益增多,只有对变频器的干扰问题有深入的认识,并采取相应的处理措施,才能够减少彼此之间的相互危害,更大程度的确保生产的正常进行和设备的稳定。
[1]李自先,等.变频器应用维护与修理[M].北京:地震出版社,2005.
变频技术论文 篇2
论文摘要:介绍了电力电子器件和变频技术的发展过程,以及变频技术在家用电器的应用,分析了变频技术的应用也带来了谐波、电磁干扰和电源系统功率因数下降等问题。提出了相关的谐波抑制方法及提高电源系统功率因数的措施。
引言
随着电力电子、计算机技术的迅速发展,交流调速取代直流调速已成为发展趋势。变频调速以其优异的调速和启、制动性能被国内外公认为是最有发展前途的调速方式。变频技术是交流调速的核心技术,电力电子和计算机技术又是变频技术的核心,而电力电子器件是电力电子技术的基础。电力电子技术是近几年迅速发展的一种高新技术,广泛应用于机电一体化、电机传动、航空航天等领域,现已成为各国竞相发展的一种高新技术。专家预言,在21世纪高度发展的自动控制领域内,计算机技术与电力电子技术是两项最重要的技术。
一、电力电子器件的发展过程
上世纪50年代末晶闸管在美国问世,标志着电力电子技术就此诞生。第一代电力电子器件主要是可控硅整流器(SCR),我国70年代将其列为节能技术在全国推广。然而,SCR毕竟是一种只能控制其导通而不能控制关断的半控型开关器件,在交流传动和变频电源的应用中受到限制。70年代以后陆续发明的功率晶体管(GTR)、门极可关断晶闸管(GTO)、功率MOS场效应管(PowerMOSFET)、绝缘栅晶体管(IGBT)、静电感应晶体管(SIT)和静电感应晶闸管(SITH)等,它们的共同特点是既控制其导通,又能控制其关断,是全控型开关器件,由于不需要换流电路,故体积、重量较之SCR有大幅度下降。当前,IGBT以其优异的特性已成为主流器件,容量大的GTO也有一定地位[1][2][3]。
许多国家都在努力开发大容量器件,国外已生产6000V的IGBT。IEGT(injectionenhancedgatethyristor)是一种将IGBT和GTO的优点结合起来的新型器件,已有1000A/4500V的样品问世。IGCT(integratedgateeommutatedthyristor)在GTO基础上采用缓冲层和透明发射极,它开通时相当于晶闸管,关断时相当于晶体管,从而有效地协调了通态电压和阻断电压的矛盾,工作频率可达几千赫兹[2][3]。瑞士ABB公司已经推出的IGCT可达4500一6000V,3000一3500A。MCT因进展不大而引退而IGCT的发展使其在电力电子器件的新格局中占有重要的地位。与发达国家相比,我国在器件制造方面比在应用方面有更大的差距。高功率沟栅结构IGBT模块、IEGT、MOS门控晶闸管、高压砷化稼高频整流二极管、碳化硅(SIC)等新型功率器件在国外有了最新发展。可以相信,采用GaAs、SiC等新型半导体材料制成功率器件,实现人们对“理想器件”的追求,将是21世纪电力电子器件发展的主要趋势。
高可靠性的电力电子积木(PEBB)和集成电力电子模块(IPEM)是近期美国电力电子技术发展新热点。GTO和IGCT,IGCT和高压IGBT等电力电子新器件之间的激烈竞争,必将为21世纪世界电力电子新技术和变频技术的发展带来更多的机遇和挑战。
二、变频技术的发展过程
变频技术是应交流电机无级调速的需要而诞生的。电力电子器件的更新促使电力变换
技术的不断发展。起初,变频技术只局限于变频不能变压。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,如:调制波纵向分割法、同相位载波PWM技术、移相载波PWM技术、载波调制波同时移相PWM技术等。
VVVF变频器的控制相对简单,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较小,受定子电阻压降的影响比较显著,故造成输出最大转矩减小。
矢量控制变频调速的做法是:将异步电动机在三相坐标系下的定子交流电流Ia、Ib、Ic通过三相——二相变换,等效成同步旋转坐标系下的直流电流Iml、Itl,然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。
直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电动机化成等效直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。
VVVF变频、矢量控制变频、直接转矩控制变频都是交—直—交变频中的一种。其共同缺点是输入功率因数低,谐波电流大,直流回路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。为此,矩阵式交—交变频应运而生。
三、变频技术与家用电器
20世纪70年代,家用电器开始逐步变频化,出现了电磁烹任器、变频照明器具、变频空调、变频微波炉、变频电冰箱、IH(感应加热)饭堡、变频洗衣机等[4]。
20世纪末期期,家用电器则依托变频技术,主要瞄准高功能和省电。
首先是电冰箱,由于它处于全天工作,采用变频制冷后,压缩机始终处在低速运行状态,可以彻底消除因压缩机起动引的噪声,节能效果更加明显。其次,空调器使用变频后,扩大了压缩机的工作范围,不需要压缩机在断续状态下运行就可实现冷、暖控制,达到降低电力消耗,消除由于温度变动而引起的不适感。近年来,新式的变频冷藏库不但耗电量减少、实现静音化,而且利用高速运行能实现快速冷冻。
在洗衣机方面,过去使用变频实现可变速控制,提高洗净性能,新流行的洗衣机除了节能和静音化外,还在确保衣物柔和洗涤等方面推出新的控制内容;电磁烹任器利用高频感应加热使锅子直接发热,没有燃气和电加热的炽热部分,因此不但安全,还大幅度提高加热效率,其工作频率高于听觉之上,从而消除了饭锅振动引起的噪声。
四、电力电子装置带来的危害及对策
电力电子装置中的相控整流和不可控二极管整流使输入电流波形发生严重畸变,不但大大降低了系统的功率因数,还引起了严重的谐波污染。
另外,硬件电路中电压和电流的急剧变化,使得电力电子器件承受很大的电应力,并给周围的电气设备及电波造成严重的电磁干扰(EM1),而且情况日趋严重。许多国家都已制定了限制谐波的国家标准,国际电气电子工程师协会(IEEE)、国际电工委员会(IEC)和国际大电网会议(CIGRE)纷纷推出了自己的谐波标准。我国政府也制定了限制谐波的有关规定[5]。
(一)谐波与电磁干扰的对策
1、谐波抑制
为了抑制电力电子装置产生的谐波,一种方法是进行谐波补偿,即设置谐波补偿装置,使输入电流成为正弦波[3]。
传统的谐波补偿装置是采用IC调谐滤波器,它既可补偿谐波,又可补偿无功功率。其缺点是,补偿特性受电网阻抗和运行状态影响,易和系统发生并联谐振,导致谐波放大,使LC滤波器过载甚至烧毁。此外,它只能补偿固定频率的谐波,效果也不够理想。
电力电子器件普及应用之后,运用有源电力滤波器进行谐波补偿成为重要方向。其原理是,从补偿对象中检测出谐波电流,然后产生一个与该谐波电流大小相等极性相反的补偿电流,从而使电网电流只含有基波分量。这种滤波器能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响。
大容量变流器减少谐波的主要方法是采用多重化技术:将多个方波叠加以消除次数较低的谐波,从而得到接近正弦的阶梯波。重数越多,波形越接近正弦,但电路结构越复杂。小容量变流器为了实现低谐波和高功率因数,一般采用二极管整流加PWM斩波,常称之为功率因数校正(PEC)。典型的电路有升压型、降压型、升降压型等。
2、电磁干扰抑制
解决EMI的措施是克服开关器件导通和关断时出现过大的电流上升率di/dt和电压上升率du/dt,目前比较引入注目的是零电流开关(ZCS)和零电压开关(ZVS)电路。方法是:
(1)开关器件上串联电感,这样可抑制开关器件导通时的di/dt,使器件上不存在电压、电流重叠区,减少了正关损耗;
(2)开关器件上并联电容,当器件关断后抑制du/dt上升,器件上不存在电压、电流重叠区,减少了开关损耗;
(3)器件上反并联二极管,在二极管导通期间,开关器件呈零电压、零电流状态,此时驱动器件导通或关断能实现ZVS、ZCS动作。
目前较常用的软件开关技术有部分谐振PWM和无损耗缓冲电路。
(二)功率因数补偿
早期的方法是采用同步调相机,它是专门用来产生无功功率的同步电机,利用过励磁和欠励磁分别发出不同大小的容性或感性无功功率。然而,由于它是旋转电机,噪声和损耗都较大,运行维护也复杂,响应速度慢。因此,在很多情况下已无法适应快速无功功率补偿的要求。
另一种方法是采用饱和电抗器的静止无功补偿装置。它具有静止型和响应速度快的优点,但由于其铁心需磁化到饱和状态,损耗和噪声都很大,而且存在非线性电路的一些特殊问题,又不能分相调节以补偿负载的不平衡,所以未能占据静止无功补偿装置的主流。
随着电力电子技术的不断发展,使用SCR、GTO和IGBT等的静止无功补偿装置得到了长足发展,其中以静止无功发生器最为优越。它具有调节速度快、运行范围宽的优点,而且在采取多重化、多电平或PWM技术等措施后,可大大减少补偿电流中谐波含量。更重要的是,静止无功发生器使用的抗器和电容元件小,大大缩小装置的体积和成本。静止无功发生器代表着动态无功补偿装置的发展方向。
五、结束语
我们相信,电力电子技术将成为21世纪重要的支柱技术之一,变频技术在电力电子技术领域中占有重要的地位,近年来在中压变频调速和电力牵引领域中的发展引人注目。随着全球经济一体化及我国加人世界贸易组织,我国电力电子技术及变频技术产业将出现前所未有的发展机遇。
参考文献:
[1]周明宝。电力电子技术[M].北京:机制工业出版社,1985.
[2]陈坚。电力电子学-电力电子变换和控制技术。北京:高等教育出版社,2002.
[3]王兆安黄俊。电力电子技术[M].北京:机械工业出版社,2003.
变频技术论文 篇3
利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动。
其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。
一般在通用变频器中,小功率变频器(22kW以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kW以上)就需外置刹车单元、刹车电阻了。
2、回馈制动
实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动。回馈制动的优点是能四象限运行,如图3所示,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。
3、新型制动方式(电容反馈制动)
1、主回路原理
整流部分采用普通的不可控整流桥进行整流,滤波回路采用通用的电解电容,延时回路采用接触器或可控硅都行。充电、反馈回路由功率模块IGBT、充电、反馈电抗器L及大电解电容C(容量约零点几法,可根据变频器所在的工况系统决定)组成。逆变部分由功率模块IGBT组成。保护回路,由IGBT、功率电阻组成。
(1)电动机发电运行状态
CPU对输入的交流电压和直流回路电压νd的实时监控,决定向VT1是否发出充电信号,一旦νd比输入交流电压所对应的直流电压值(如380VAC—530VDC)高到一定值时,CPU关断VT3,通过对VT1的脉冲导通实现对电解电容C的充电过程。此时的电抗器L与电解电容C分压,从而确保电解电容C工作在安全范围内。当电解电容C上的电压快到危险值(比如说370V),而系统仍处于发电状态,电能不断通过逆变部分回送到直流回路中时,安全回路发挥作用,实现能耗制动(电阻制动),控制VT3的关断与开通,从而实现电阻R消耗多余的能量,一般这种情况是不会出现的。
(2)电动机电动运行状态
当CPU发现系统不再充电时,则对VT3进行脉冲导通,使得在电抗器L上行成了一个瞬时左正右负的电压(如图标识),再加上电解电容C上的电压就能实现从电容到直流回路的能量反馈过程。CPU通过对电解电容C上的电压和直流回路的电压的检测,控制VT3的开关频率以及占空比,从而控制反馈电流,确保直流回路电压νd不出现过高。
2、系统难点
(1)电抗器的选取
(a)、我们考虑到工况的特殊性,假设系统出现某种故障,导致电机所载的位能负载自由加速下落,这时电机处于一种发电运行状态,再生能量通过六个续流二极管回送至直流回路,致使νd升高,很快使变频器处于充电状态,这时的电流会很大。所以所选取电抗器线径要大到能通过此时的电流。
(b)、在反馈回路中,为了使电解电容在下次充电前把尽可能多的电能释放出来,选取普通的铁芯(硅钢片)是不能达到目的的,最好选用铁氧体材料制成的铁芯,再看看上述考虑的电流值如此大,可见这个铁芯有多大,素不知市面上有无这么大的铁氧体铁芯,即使有,其价格也肯定不会很低。所以笔者建议充电、反馈回路各采用一个电抗器。
(2)控制上的难点
(a)、变频器的直流回路中,电压νd一般都高于500VDC,而电解电容C的耐压才400VDC,可见这种充电过程的控制就不像能量制动(电阻制动)的控制方式了。其在电抗器上所产生的瞬时电压降为,电解电容C的瞬时充电电压为νc=νd-νL,为了确保电解电容工作在安全范围内(≤400V),就得有效的控制电抗器上的电压降νL,而电压降νL又取决于电感量和电流的瞬时变化率。
(b)、在反馈过程中,还得防止电解电容C所放的电能通过电抗器造成直流回路电压过高,以致系统出现过压保护。
3、主要应用场合及应用实例
正是由于变频器的这种新型制动方式(电容反馈制动)所具有的优越性,近些来,不少用户结合其设备的特点,纷纷提出了要配备这种系统。由于技术上有一定的难度,国外还不知有无此制动方式?国内目前只有山东风光电子公司由以前采用回馈制动方式的变频器(仍有2台在正常运行中)改用了这种电容反馈制动方式的新型矿用提升机系列。
随着变频器应用领域的拓宽,这个应用技术将大有发展前途,具体来讲,主要用在矿井中的吊笼(载人或装料)、斜井矿车(单筒或双筒)、起重机械等行业。总之需要能量回馈装置的场合都可选用。
参考文献
1、韩安荣。通用变频器及其应用(第2版)[M].北京:机械工业出版社,
变频器论文 篇4
论文摘要:在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏。
一、引言
在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。
在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。
在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。
二、能耗制动
利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动。
其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。
一般在通用变频器中,小功率变频器(22kW以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kW以上)就需外置刹车单元、刹车电阻了。
三、回馈制动
实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动。回馈制动的优点是能四象限运行,如图3所示,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。
四、新型制动方式(电容反馈制动)
1、主回路原理
整流部分采用普通的不可控整流桥进行整流,滤波回路采用通用的电解电容,延时回路采用接触器或可控硅都行。充电、反馈回路由功率模块IGBT、充电、反馈电抗器L及大电解电容C(容量约零点几法,可根据变频器所在的工况系统决定)组成。逆变部分由功率模块IGBT组成。保护回路,由IGBT、功率电阻组成。
(1)电动机发电运行状态
CPU对输入的交流电压和直流回路电压νd的实时监控,决定向VT1是否发出充电信号,一旦νd比输入交流电压所对应的直流电压值(如380VAC—530VDC)高到一定值时,CPU关断VT3,通过对VT1的脉冲导通实现对电解电容C的充电过程。此时的电抗器L与电解电容C分压,从而确保电解电容C工作在安全范围内。当电解电容C上的电压快到危险值(比如说370V),而系统仍处于发电状态,电能不断通过逆变部分回送到直流回路中时,安全回路发挥作用,实现能耗制动(电阻制动),控制VT3的关断与开通,从而实现电阻R消耗多余的能量,一般这种情况是不会出现的。
(2)电动机电动运行状态
当CPU发现系统不再充电时,则对VT3进行脉冲导通,使得在电抗器L上行成了一个瞬时左正右负的电压(如图标识),再加上电解电容C上的电压就能实现从电容到直流回路的能量反馈过程。CPU通过对电解电容C上的电压和直流回路的电压的检测,控制VT3的开关频率以及占空比,从而控制反馈电流,确保直流回路电压νd不出现过高。
2、系统难点
(1)电抗器的选取
(a)、我们考虑到工况的特殊性,假设系统出现某种故障,导致电机所载的位能负载自由加速下落,这时电机处于一种发电运行状态,再生能量通过六个续流二极管回送至直流回路,致使νd升高,很快使变频器处于充电状态,这时的电流会很大。所以所选取电抗器线径要大到能通过此时的电流。
(b)、在反馈回路中,为了使电解电容在下次充电前把尽可能多的电能释放出来,选取普通的铁芯(硅钢片)是不能达到目的的,最好选用铁氧体材料制成的铁芯,再看看上述考虑的电流值如此大,可见这个铁芯有多大,素不知市面上有无这么大的铁氧体铁芯,即使有,其价格也肯定不会很低。所以笔者建议充电、反馈回路各采用一个电抗器。
(2)控制上的难点
(a)、变频器的直流回路中,电压νd一般都高于500VDC,而电解电容C的耐压才400VDC,可见这种充电过程的控制就不像能量制动(电阻制动)的控制方式了。其在电抗器上所产生的瞬时电压降为,电解电容C的瞬时充电电压为νc=νd-νL,为了确保电解电容工作在安全范围内(≤400V),就得有效的控制电抗器上的电压降νL,而电压降νL又取决于电感量和电流的瞬时变化率。
(b)、在反馈过程中,还得防止电解电容C所放的电能通过电抗器造成直流回路电压过高,以致系统出现过压保护。
3、主要应用场合及应用实例
正是由于变频器的这种新型制动方式(电容反馈制动)所具有的优越性,近些来,不少用户结合其设备的特点,纷纷提出了要配备这种系统。由于技术上有一定的难度,国外还不知有无此制动方式?国内目前只有山东风光电子公司由以前采用回馈制动方式的变频器(仍有2台在正常运行中)改用了这种电容反馈制动方式的新型矿用提升机系列。
随着变频器应用领域的拓宽,这个应用技术将大有发展前途,具体来讲,主要用在矿井中的吊笼(载人或装料)、斜井矿车(单筒或双筒)、起重机械等行业。总之需要能量回馈装置的场合都可选用。
参考文献
变频器论文 篇5
(1)一般的恒转矩负载要求
变频器必须具备以下几个条件:过载能力较大;过载时间足够;具备较大的启动及转动转矩;具备恒定转矩特性。
(2)对于风机、泵类的负载
选择变频调速系统时需符合以下两个条件:设备经济性、可靠性较高,能够提供稳定的转速;可以针对机电设备的情况选择变频控制模式。
(3)对于恒功率负载
选择变频器时需符合以下两个条件:输出为定值控制;该变频器能够满足对其进行针对性设计的需求。因此,为了确保电机处于经济运行状态,必须根据负载的机械特性,选择合适的变频调速电机。而使用中的变频调速电机,要尽量避免长时间空载、轻载,同时要加强设备维护检修,使其保持在最佳工作状态,
二改进四象限变频器,提高煤矿机电设备的灵活性
采煤作业环境复杂多变,大量机电设备处于负荷频繁波动状态,这些因素给煤矿安全生产带来了很大困扰。当前煤矿机电设备采用四象变频器技术大大缓解了这个现象。四象限变频器将整流电路由原来的全波整流桥调整为由智能功率模块构成的可控整流桥,以便更好地完成采掘工作。四象限变频器与普通变频器的区别在于电机处于发电状态时,其逆变电路和整流电路将会发生互换,从而实现将电机所产生的电量输送至其他设备的目的。
1在采煤机中的应用
我国采煤机变频调速系统已由之前的“一拖二”改进为现在的“一拖一”。我国自主研发的采煤机已处于世界领先水平,例如采煤机ACS-800变频器,可以确保加速时不过流、减速时不过压。整个过程可根据电机功率进行计算,还能根据现场情况做适当调整,从而实现降低能耗、提升工作效率的目的。
2在提升机中的应用
在煤矿提升装置中应用时,普通变频器存在较大的弊端,问题主要在于电机制动产生的能量会过多消耗在电阻上。变频技术的创新,可以将电机处于二、四象限运行过程中发电产生的电能回馈给电网侧使用,从而让提升机实现匀速、加速工作与平稳启动、关闭,并借助数字控制系统有效提升工作效率,这对保障工作人员的人身安全起着重要作用。
3在胶带输送机中的应用
胶带输送机具有大功率、高电压等特点,主要通过胶带与轮毂之间的摩擦作用实现煤炭传送。可以采用变频节能技术对上山胶带输送机进行改造,原理和提升机相似,改造可以改变胶带输送机的启动模式,彻底实现软启动,让机电设备实现平稳运行。变频节能技术还能降低机电设备的发热量,在降低能耗的基础上延长胶带的使用寿命,最终提高胶带输送机的工作效率。
三使用变频技术改善
各电路元件间的逻辑关系,优化电路变频器由键盘、电机、电源板、控制主板等构成,结构相对复杂。采用变频节能技术改善电路元件之间的逻辑关系,不仅可以优化电路,为煤矿机电设备提供适宜的运行环境,而且能够在一定程度上延长煤矿机电设备的使用寿命。变频节能技术实现这一功能的关键在于通过IGBT等功率开关器件以及PWM控制技术,实现从交流到直流再到交流的转换。变频器电路一般包括主电路和控制电路两个部分,主电路的正常运行需要控制信号配合。通常电压检测电路会设置一个电压上限值,如果检测到的直流母线电压超过该上限值,电压检测电路便向变频器发出控制信号,使变频器的过压保护启动。
四结语
综上所述,通过改进压频比控制模式、根据负载合理选择变频器与电机、改进四象限变频器、使用变频技术改善各电路元件间的逻辑关系等策略,可以有效实现煤矿机电设备的技术改造。总体来看,变频技术也并非完美,比如存在噪声和振动比较大、应用成本比较高等问题,但整体来看,变频技术在我国煤矿机电设备的改造中具有很大的应用空间。
变频技术论文 篇6
关键词变频压缩机变频调速系统技术现状
1引言
由于传统的制冷系统采用定速压缩机,因此人们对制冷系统及压缩机的研究重点一直是在名义工况和额定转速下稳态工作时的效率和其它工作特性上。传统的制冷系统采用定转速压缩机,实行开关控制,利用压缩机上附带的鼠笼式电动机驱动压缩机,从而调节蒸发温度。这种控制方式使蒸发温度波动较大,容易影响被冷却环境的温度。压缩机电机在工作过程中要不断克服转子从静止到额定转速变化过程中所产生的巨大转动惯量,尤其是带着负荷启动时,启动力矩要高出运行力矩许多倍,其结果不仅要额外耗费电能,而且会加剧压缩机运动部件的磨损。另外这种运行方式在启动过程中还会产生较大的振动、噪声以及冲击电流,引起电源电压的波动,因此应采用变频压缩机替代定转速压缩机,从而避免这种频繁的起停过程。
而变频调速技术主要由以下4个方面的关键技术组成:逆变器,微控制器,PWM波的生成以及变频压缩机的电机选择。
2三种变频压缩机的研究状况
针对变频压缩机的研究,是从往复活塞机开始的,但由于其往复运动的特点,影响到变频特性的发挥;从而转到滚动转子式压缩机、涡旋压缩机等回转式压缩机上来,大大提高了压缩机的性能。总体说来,实验研究居多,而理论分析较少。
2.1往复式活塞压缩机
日本东芝公司在1980年开发了往复式变频压缩机,又在1981年开发了转子式变频压缩机,文献[1]给出这两种机器的制冷量和总效率随频率变化的实验数据,从中可以看出往复式在频率为25~75Hz时,效率高;而转子式在30~90Hz时,效率高。并且两种机型均存在效率最高频率。在大于此频率时效率缓慢降低,小于此频率时,效率则下降很快。另外,Scalabrin测量一台可变速的开启式往复压缩机在不同转速下的制冷量和输入功率,他指出这台压缩机的容积效率在转速为1000rpm时最高,而等熵效率和制冷系数随转速的降低而增高[2]。Krueger讨论了BPM电机及变频器的设计,对转速在2000~5000rpm的冰箱和往复式压缩机进行了实验研究,得到压缩机的转速为3000~5000rpm时制冷系数最高;而文献[3]则给出了其对冰箱用往复式压缩机的性能试验和模拟计算结果,在其研究的转速范围内2000~4000rpm,制冷系数随转速的增加而降低。还有学者对往复式变频压缩机的热力性能进行了仿真研究,计算了压缩机内各部位的换热量和压力损失。
2.2滚动转子式压缩机
在1984年,日本东芝公司的Sakurai和美国普渡大学的Hamilton建立了简单的滚动转子式压缩机的摩擦损失模型[4],并选取不同的边界摩擦系数和制冷剂在油中的溶解度计算了不同的转速下的摩擦功耗。其结果与实验值相比较,偏差较大。文献[5]叙述了日立公司1983年批量生产的变频转子压缩机在结构和材料上的改进。文献[6]研究了单缸和双缸转子压缩机的转速波动,讨论了电流频率减小时,压缩机性能降低的原因。文献[7]采用低密度和铝合金制作的滑片和转子以降低高转速时滑睡瑟转子间的接触力和转子轴承承载。文献[8]简单分析了适当降低滑片的质量和厚度可以提高变频转子压缩机的效率,并给出了气缸、转子和滑处的温度及应力分布的有限元分析结果。Liu和Soedel分析了变频转子压缩机的吸气和排气气流脉动[9,10]和吸气管气缸间的传热及压缩机的温度分布[11],讨论了影响变频转子压缩机容积效率和气缸压缩过程效率的因素,给出了他们用计算机模拟计算出的在不同转速下的容积效率和压缩过程效率,从实验数据和文献[1]的实验可以看出,其计算的容积效率随转速的增大而很快的增大。
2.3涡旋式压缩机
涡旋式压缩机的原理早在1886年意大利的专利文献[12]论及到了,1905年法国工程师Creux正式提出涡旋式压缩机原理及结构,并申请美国专利[13]。涡旋式压缩机是一种新型的容积式压缩机,具有结构紧凑、效率高、可靠性强、噪声低等特点,尤其是用于变频控制运行。但由于没有数控加工技术和缺乏对轴向力平衡问题的妥善解决方法,因而长期未能完成其实用化。进入70年代,美国A.D.L公司完成富有成效的研究,首先解决了涡旋盘端部磨损补偿的密封技术。并在此基础上与瑞士合作开发了多种工质的涡旋式压缩机样机。涡旋式压缩机的真正规模生产始于日本。1981年日本三电(SANDEN)公司开始生产用于汽车空调的涡旋式压缩机,1983年日立公司开始生产2~5Hp用于房间空调的涡旋式压缩机。此外,在美国,自Copeland公司1987年建立涡旋式压缩机生产线推出其产品后,Carrier、Trane、Tecumseh等公司也分别设厂生产高质量的涡旋式压缩机。而变频涡旋压缩机已应用于柜式空调器上,节能效果明显,制冷系数提高20%左右,成为目前涡旋压缩机的一个研究热点。
3变频调速技术的发展及现状
变频调速技术适应于节能降耗和舒适性的要求,目前已应用于新一代的空调器上,在90年代初进入国内空调市场,其核心是:逆变器、微控制器、PWM波的生成和变频压缩机的电机。
3.1逆变器
变频空调的核心部件是变频器,其主要电路采用交-直-交电压型方式。交-直过程一般采用单相二级管不可控直接整流,直-交过程一般采用6管三相逆变器,另有一个辅助电源,一个逆变器控制器和相应的驱动电路。
早期的变频器采用分立元件构成,整流器采用单相倍压整流电路,逆变器由6只分立的功率晶体管(GTR)构成。这种电路复杂,可靠性差。目前大部分厂家采用的逆变桥由6个绝缘栅极晶体管(IGBT)组成,其综合了MOSFET和GTR的优点,开关频率高、驱动功率小。随着智能功率模块(IPM)技术的发展应用,IPM正在逐步取代普通IGBT模块。由于IPM内部既有IGBT的棚极驱动和保护逻辑,又有过流、过(欠)压、短路和过热探测以及保护电路,提高了变频器的可靠性和可维护性。另外,IPM的体积与普通IGBT模块不相上下,价格也比较接近,因此目前应用较为广泛。比较成功的产品如:日本三菱电机公司所生产的PM20CSJ060型以及日本新电元公司生产的TM系列IPM模块等。
功率因素校正(PFC)环节和逆变桥集成是新一代的空调器逆变电源技术。PFC技术的应用不但可以极大改善电网的工作环境,减少输电线的损耗,而且在变频工作时可以减小输入端电感和输出端电容器,减小模块体积。因此PFC环节和IPM逆变桥集成一体化是家用空调器发展的必然。
3.2微控制器
微电子技术的发展使变频调速的实现手段发生了根本的变化,从早期的模拟控制技术发展数字控制技术。目前国外一些跨国公司的微控制器产品占据着主要的市场,如:Motorola公司的MC68HC08MP16、Intel公司的80C196MC、三菱公司的M37705等。这些公司的产品性能价格比较高、功能强大,如带有A/D转换器、PWM波形发生器、LED/LCD驱动等,且一般都有OTP产品以及功耗低可长期稳定的工作。微控制器目前主要由单片机向DSP(信号处理器)过渡。以目前应用比较广泛的TI公司的TMS320C240为例,其具有:50Ns的指令周期,544字的RAM,16K的EEPROM,12个PWM通道,三个16位计数器,两个10位A/D转换,WATCHDOG,串行通讯口,串行接口等,采用DSP,可使控制电路简单,而且控制功能强大。
3.3PWM波的生成
在家用空调器中,目前国内大部分厂家采用常规的SPWM方法,在国外,在部分厂家以采用磁通跟踪型SPWM生成方法,该方法以不同的开关模式在电机中产生的实际磁通去逼近定子磁链的给定轨迹—理想磁通圆,即用空间电压矢量的方法决定逆变器的开关状态,以形成PWM波形,该方法电压利用率高,低频谐波转矩小,频率变化范围宽、运行稳定,具有比较好的控制性能。近期出现的PAM控制(PulseAmplitudeModulation)不采用载波频率进行整流,而直接改变电压,减少了整流所需的能耗,提高了变频器的工作效率,满足了节电和降低高次谐波的要求,使供暖能力得到提高。
3.4变频压缩机的电机
变频压缩机电机主要分为交流异步电动机和直流无刷电动机两种。目前国内一些大的压缩机生产厂家如:万宝、松下、上海日立、东芝万家乐等已有能力生产变频压缩机(包括交流机和直流机),交流电动机成本低,制造工艺简单,但其节能效果较差。直流无刷电机拖动由无刷电机本身,转子位置传感器和电子换向开关组成。转子磁极为永磁体,电枢绕组采用自控式换流,定子旋转磁场与转子磁极同步旋转,通常采用按转子磁场定向的定子电流矢量变换控制,既有普通直流电机良好的调速性能和启动性能,又从根本上消除了换向火花、无线电干扰的弊端,具有寿命长、可靠性高和噪声低,控制方便等优点。以1998年三菱电机公司开发的适用于空调压缩机的节能高效直流无刷电机为例,其具有:转子上安装了8块V字型永久磁体。磁体为埋入式,转子不会在不锈钢外壳中因涡流因而产生损耗;采用了新的压缩机电机驱动方式,效率比普通的无刷电机高,但是这种压缩机电机的价格较高。