《小学六年级数学知识点归纳整理》
小学六年级的学生准备升初中的时候,这时做好复习整理是十分重要的,下面小编为大家带来小学六年级数学知识点归纳整理,希望对您有帮助,欢迎参考阅读!
小学六年级数学知识点
一、算术
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b = b + a
3、乘法交换律:a × b = b × a
4、乘法结合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性质:a ÷ b ÷ c = a ÷(b × c)
7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、有余数的除法: 被除数=商×除数+余数
二、方程、代数与等式
等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
代数: 代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。如:3x =ab+c
三、分数
分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的.分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。
分数除以整数(0除外),等于分数乘以这个整数的倒数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小
分数的除法则:除以一个数(0除外),等于乘这个数的倒数。
真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
带分数:把假分数写成整数和真分数的形式,叫做带分数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
必背定义、定理公式
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
读懂理解会应用以下定义定理性质公式
数学学习计划
复习内容:
1、掌握数的顺序和大小,掌握9以内各数的组成。
2、初步知道加、减法的含义和加减法算式中各部分部分名称,初步知道加法和减法的关系,比较熟练地计算一位数的加法和9以内的减法。
3、初步学会根据加、减法的含义和算法解决一些简单的实际问题。
4、直观认识长方体、正方体、圆柱、球、长方形、正方形、三角形和圆。
5、初步了解分类的方法,会进行简单的分类。
6、认真作业、书写整洁的良好习惯。
7、通过实践活动体验数学与日常生活的密切联系。
复习目标:
1、理解加、减法的含义,进一步理解和掌握9以内的加、减法,能正确、熟练地口算相关的式题,形成相应的计算技能。
2、在具体的活动中,进一步认识长方体、正方体、圆柱和球,认识上下、前后、左右等方位,能应用分一分、排一排、数一数等方法收集和整理一些简单的数据,培养初步的空间观念和统计观念。
3、在应用所学知识解决简单实际问题的过程中,进一步发展分析问题、解决问题的能力,体会数学在日常生活中的广泛应用,培养初步的数学应用意识。
复习措施:
1、复习前,充分了解学生的学习情况,弄清学生对哪些知识掌握的比较好,哪些知识还存在问题,存在什么问题,从而有计划、有针对性地开展复习活动,以增强复习的实效性。
2、复习加减法计算时,可以采用游戏、竞赛等多种形式组织学生练习,以激发学生练习的兴趣,提高计算的正确率和熟练程度,促进计算技能的形成。
3、扎扎实实打好基础知识和基本技能,同时重视培养学生创新意识和学习数学的兴趣。
4、把握好知识的重点、难点以及知识间的内在联系,使学生都在原来的基础上有所提高。
5、把上半学期所学知识分块归类复习,针对单元测试卷、练习册、作业中容易出错的题作重点的渗透复习、设计专题活动,渗透各项数学知识。专题活动的设计可以使复习的内容综合化,给学生比较全面地运用所学知识的机会。
6、根据平时教学了解的情况,结合复习有关的知识点做好有困难学生的辅导工作。
具体安排:
1、数的组成,物体的位置与顺序。(2课时)掌握数的顺序及组成;能确定物体前后、左右、上下的位置与顺序。
2、立体图形与平面图形(1课时)进一步认识长方体、立方体、圆柱体、球和长方形、正方形、三角形、圆。
3、分类(1课时)掌握分类的方法。
4、9以内加减法计算(3课时)通过对算式的计算与分类,整理加减计算方法,提高计算的正确率。激发学生积极思考问题,在复习中感知数学思考的有序性和条理性。
5、图文题(2课时)从量的意义上揭示部分和整体的关系,使学生进一步认识加、减法的关系。提高学生理解图意的能力,能根据图分析简单的数量关系,渗透图中所反映的事物概念之间的种属关系。
数学教学心得
数学学习要注重提升素养承认“解题”对数学学习的作用,并不是无限制地扩大它的价值,毕竟解题只是数学学习的途径与手段,绝不是数学学习的终极目标。在新课程背景下,许多学者呼吁从关注“双基”到“四基”,数学学习的目标在于掌握必需的基础知识和基本技能,积累丰富的活动经验,体悟数学的基本思想。数学学习不只是解题,在学习的过程中还将学会观察,学会思考,学会表达,学会书写,学会合作。著名特级教师张天孝研究小学数学教学50年,他有一个治学心得是:“让学生在学习中学会学习,在思考中学会思考。”这正是对数学学习目标的精辟提升。
如果以上的表述并不具有数学学科的特点的话,那么加上一个定语——让学生用数学的眼光进行数学思考。比如,百货店的促销信息,人们不仅会关注哪个折扣低,还会关注标价的高低。美国统计学家戴维〃S〃穆尔的《统计学的世界》一书中有幅漫画,画的是一个人误以为平均水深就是每一个地方都是这样的水深而溺水死亡,从侧面反映了数学常识在现实生活中的作用。
数学地思考,是数学学习的更高目标。数学学习过程中所倡导的思考方式是具有学科特点的。看到一幅图画时,别的学科可能关注的是这幅图是多么的美观,但是对于数学学习来说,教师需要引导学生关注这个图形的组成与分解,引导学生思考的是多边形线的条数等。这种量化、精确化的思考方式是数学教学最根本的目标价值所在。