首页 > 学习方法 > 高中学习方法 > 高一学习方法 > 高一数学 > 湘教版高中数学必修一电子课本正文

《湘教版高中数学必修一电子课本》

时间:

数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科,那么关于高中数学必修一电子课本怎么预习呢?以下是小编准备的一些湘教版高中数学必修一电子课本,仅供参考。

高中数学必修一电子课本

微信搜索关注公众号:5068教学资料

查看完整版电子课本可微信搜索公众号【5068教学资料】,关注后对话框回复【11】获取高中数学电子课本资源。

高一数学上册复习知识点

解三角形

(1)正弦定理和余弦定理

掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.

(2)应用

能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.

数列

(1)数列的'概念和简单表示法

①了解数列的概念和几种简单的表示方法(列表、图象、通项公式).

②了解数列是自变量为正整数的一类函数.

(2)等差数列、等比数列

①理解等差数列、等比数列的概念.

②掌握等差数列、等比数列的通项公式与前项和公式.

③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.

④了解等差数列与一次函数、等比数列与指数函数的关系.

高一数学上册练习题

一、选择题(每小题3分,共36分,每小题只有一个正确答案)

1.设全集U=M∪N={1,2,3,4,5},M∩(?_UN)={2,4},则N=()

A.{1,2,3}B.{1,3,5}C.{1,4,5}D.{2,3,4}

2.已知函数f(x)=√(1-x)/(2x^2-3x-2)的定义域是()

A.(-∞,1]B.(-∞,-1/2)

C.(-∞,2]D.(-∞,-1/2)∪(-1/2,1]

3.设集合M={x|x=k/2+1/4,k∈Z},N={x|x=k/4+1/2,k∈Z},则正确的是()

A.M=NB.M?NC.N?MD.M∩N=?

4.若f(x)是偶函数,且当x≥0时,f(x)=x-1,则f(x-1)<0的解集是()

A.(0,2)B.(-2,0)C.(-1,1)D.(-∞,0)∪(1,2)

5.已知集合A={1,2},B={x|mx-1=0},若A∩B=B,则符合条件的实数m的值组成的集合为()

A.{1,1/2}B.{-1,1/2}C.{1,0,1/2}D.{1,-1/2}

6.函数f(x)=(4^x+1)/2^x的图像()

A.关于原点对称B.关于直线y=x对称

C.关于x轴对称D.关于y轴对称

7.已知函数f(x)=1/√(ax^2+3ax+1)的定义域为R,则实数a的取值范围是()

A.(0,4/9)B.[0,4/9]C.(0,4/9]D.[0,4/9)

8.已知三个实数a,b=a^a,c=a^(a^a),其中0.9

A.a

9.函数f(x)=x^3/(e^x-1)的图象大致是()

10.若函数y=x^2-4x-4的定义域为[0,m],值域为[-8,-4],则m的取值范围是()

A.(0,2]B.(2,4]C.[2,4]D.(0,4)

11.设f(x)={█((x-a)^2,x≤0,@x+1/x+a,x>0.)┤若f(0)是f(x)的小值,则实数a的取值范围为()

A.[-1,2]B.[-1,0]C.[1,2]D.[0,2]

12.定义在[-2018,2018]上的函数f(x)满足:对于任意的x_1,x_2∈[-2018,2018],有〖f(x〗_1+x_2)=f(x_1)+f(x_2)-2017,且x>0时,有f(x)>2017.若f(x)的大、小值分别为M,N,则M+N=()

A.2016B.2017C.4032D.4034

二、填空题(每小题4分,共16分)

13.1/(√2-1)-(3/5)^0+(9/4)^(-1/2)+?((2/3-√2)^4=).

14.函数y=|2^x-1|与y=a的图像有两个交点,则实数a的取值范围是.

15.已知f(x)是定义在R上的奇函数,且f(x+2)=-1/(f(x)),当2≤x≤3时,f(x)=x,则f(105.5)=.

16.若函数f(x)={█(a^x,x>1,@(3-a)x+1,x≤1.)┤是R上的增函数,则实数a的取值范围是.

三、解答题(共48分)

17.(本小题满分10分)已知f(x)是定义在(0,+∞)上的单调递增函数,且f(xy)=f(x)+f(y),f(3)=1.

(1)求f(1);

(2)若f(x)+f(x-8)≤2,求x的取值范围.

18.(本小题满分12分)已知集合A={x|2<2^x<8},B={x|2m

(1)若A∩B=(1,2),求〖(?〗_RA)∪B;

(2)若A∩B=?,求实数m的取值范围.

19.(本小题满分12分)已知

(1)当,时,求函数的值域;

(2)若函数在区间[0,1]内有大值-5,求a的值.

20.(本小题满分14分)已知定义在R上的函数f(x)=(b-2^x)/(2^(x+1)+a)是奇函数.

(1)求实数a,b的值;

(2)判断f(x)在(-∞,+∞)上的单调性并用定义法证明;

(3)若f(k?3^x)+f(3^x-9^x+2)>0对任意x≥1恒成立,求k的取值范围.

高一数学教案

重点

理解角与角的相关概念;掌握角的度量单位以及单位之间的换算.

难点

理解角与角的相关概念;掌握角的度量单位以及单位之间的换算.

一、创设情境,导入新知

展示实物:时钟,圆规,折扇等.

(1)观察实物与图片,你发现其中有什么相同图形吗?学生回答,教师点评,注意鼓励学生.

(2)你能把观察得到的图形画在本子上或黑板上吗?这是一些什么图形?思考,动手画一画.

(3)从黑板上这些不同的图形中,你能归纳出它们的共同特点吗?

学生相互交流并回答,挖掘和利用现实生活中与角相关的背景,让学生在现实背景中认识角,培养学生的动手能力.引导学生观察并归纳角的共同点,进而引入课题.

二、自主合作,感受新知

回顾以前学的知识、阅读课文并结合生活实际,完成“预习导学”部分.

三、师生互动,理解新知

探究点一:角的概念及表示方法

活动一:从生活中认识角

我们看物体时,有视角,钟表的指针转动也形成角.请同学们看课本后回答下面问题.

(1)角是一个几何图形,请大家说说,角是由什么图形构成的?(学生回答,教师点评,注意鼓励学生)

(2)如果我们把角看作是一条射线绕它的端点旋转围成的图形,那么始边和终边又指什么?

教师总结:角有两个定义,一个是静态的定义,把角看作由一点出发的两条射线组成的图形;另一个定义是动态的,把角看作一条射线绕端点旋转所形成的图形,把开始位置的射线叫做始边,把终止位置的射线叫做终边.

(3)请同学们说一说,我们日常生活中,哪些地方有角.(学生举例)

活动二:角的表示方法

我们怎样表示角呢?请同学们看课本上说了几种表示方法?(学生先看书,后回答)

教师总结:(1)用三个大写字母可以表示一个角,比如∠AOB.

练习:谁能指出下列各角的顶点和两条边?

注意:①三个字母的顺序有规定,顶点的字母必须写在中间.

②顶点的字母不一定用O,角的始边与终边的字母也可以随意.

(2)当一个顶点只有一个角时,也可以用顶点的字母表示.比如,下面的角可以表示为∠O.

练习:判断下列角可以用顶点的字母表示吗?

(3)用数字或小写的希腊字母表示角.(注意:角中不能有角)

练习:下面表示角的方法,哪个是正确的?哪个是错误的?

探究点二:角的度量

活动三:角的度量

(1)请同学们借助量角器画出下列各角:

①30° ②45° ③60° ④90° ⑤120° ⑥150° ⑦62° ⑧105°

学生画图,教师指导.(根据需要教师可先做示范)

(2)任意画一个角,用量角器测量角的大小.提问:如果这个角的度数不是整数,应该怎样表示这个角的度数呢?引出角的度量单位是度、分、秒.

教师总结:它们之间的关系是:1°=60′,1′=60″ (强调度、分、秒是60进制,不是十进制).

(3)还有什么单位是60进制?

(4)让学生画一个1°角,感受1°角有多大.

四、应用迁移,运用新知

1.角的定义

例1 下列说法中,正确的是( )

A.两条射线组成的图形叫做角

B.有公共端点的两条线段组成的图形叫做角

C.角可以看作是由一条射线绕着它的端点旋转而形成的图形

D.角可以看作是由一条线段绕着它的端点旋转而形成的图形

解析:A.有公共端点的两条射线组成的图形叫做角,故错误;B.根据A可得B错误;C.角可以看作是由一条射线绕着它的端点旋转而形成的图形,正确;D.据C可得D错误.

方法总结:此题考查了角的定义,有公共端点的两条不重合的射线组成的图形叫做角.这个公共端点叫做角的顶点,这两条射线叫做角的两条边.

2.角的表示方法

例2 下列四个图形中,能用∠1、∠AOB、∠O三种方法表示同一个角的图形是( )

A B C D

解析:在角的顶点处有多个角时,用一个字母表示这个角,这种方法是错误的.所以A、C、D错误.

方法总结:角的两个基本元素中,边是两条射线,

顶点是这两条射线的公共端点.

3.判断角的数量

例3 如图所示,在∠AOB的内部有3条射线,则图中角的个数为( )

A.10 B.15 C.5 D.20

解析:可以根据图形依次数出角的个数;或者根据公式求图中角的个数是12×5×(5-1)=10.

方法总结:若从一点发出n条射线,则构成12n(n-1)个角.

4.角的度量

例4 见课本P144例1.

方法总结:用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位,乘以进率;而小单位化大单位要除以进率.

五、尝试练习,掌握新知

课本P144练习第1、2题、P145练习第1、2题.

“随堂演练”部分.

六、课堂小结,梳理新知

通过本节课的学习,我们都学到了哪些数学知识和方法?

本节课学习了角及角的有关概念,并会表示角;知道角的度量单位,并能进行单位的转换;会把角的知识与现实生活相联系,用角的知识解释生活中的一些现象.

七、深化练习,巩固新知

课本P145~146习题4.4第1~4题.

“课时作业”部分.

高一数学上册教学计划

高一年级学生对学习缺乏热情,学习习惯不好,学生学习动机不明确,这给教学工作带来了一定的难度,课堂上能听讲,但是课后不归纳总结,不做题,学习效率低。另外,高中数学知识难度大,学生基础差,导致学生兴趣下降。学生意志薄弱,耐挫力差。许多学生意志不坚定,因此很多学生坚持性差,意志薄弱,一旦碰到困难便打退堂鼓,害怕去学、去动脑,长期下去,便产生厌学情绪。针对这种情况,特作以下计划:

一、学生状况分析

本学年,我担任高一(9)和(10)班的数学课。两个班整体水平都一般,成绩以中下等为主,中上不多,后进生有很多。其中在中考成绩两个班中都存在20人以上等级分在5分以下。从而看出基础知识不太牢固,当然上课效率也不是很高。

二、教材简析

使用人教版《普通高中课程标准实验教科书·数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。必修1有三章(集合与函数概念;基本初等函数;函数的应用);必修2有四章(空间几何体;点线平面间的位置关系;直线与方程;圆与方程)。

三、教学任务

本期授课内容为必修1和必修2,必修1在期中考试前完成;必修2在期末考试前完成。

四、教学质量目标

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。

2、提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。

3、提高学生提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的`能力。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

五、促进目标达成的重点工作及措施

重点工作:

认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要内容,坚持“抓两头、带中间、整体推进”,使每个学生的数学能力都得到提高和发展。

分层推进措施

高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:

(1)注意研究学生,做好初、高中学习方法的衔接工作。在教学的过程中注意降低难度。

(2)集中精力打好基础,分项突破难点、所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。、

(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备

(5)抓好尖子生与后进生的辅导工作

(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

(7)重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。

(8)合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。