首页 > 学习方法 > 高中学习方法 > 高二学习方法 > 高二数学 > 高二数学下学期知识点有哪些正文

《高二数学下学期知识点有哪些》

时间:

有很多的学生在在复习高二下学期数学时,因为之前没有做过系统的总结,所以后来导致复习知识时整体效率低下。下面小编为大家带来高二数学下学期知识点哪些,希望对您有所帮助!

高二数学下学期知识点

1.任意角

(1)角的分类:

①按旋转方向不同分为正角、负角、零角.

②按终边位置不同分为象限角和轴线角.

(2)终边相同的角:

终边与角相同的角可写成+k360(kZ).

(3)弧度制:

①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.

②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=,l是以角作为圆心角时所对圆弧的长,r为半径.

③用弧度做单位来度量角的制度叫做弧度制.比值与所取的r的大小无关,仅与角的大小有关.

④弧度与角度的换算:360弧度;180弧度.

⑤弧长公式:l=||r,扇形面积公式:S扇形=lr=||r2.

2.任意角的三角函数

(1)任意角的三角函数定义:

设是一个任意角,角的终边与单位圆交于点P(x,y),那么角的'正弦、余弦、正切分别是:sin=y,cos=x,tan=,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.

(2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦.

3.三角函数线

设角的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M.由三角函数的定义知,点P的坐标为(cos_,sin_),即P(cos_,sin_),其中cos=OM,sin=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与的终边或其反向延长线相交于点T,则tan=AT.我们把有向线段OM、MP、AT叫做的余弦线、正弦线、正切线.

高二数学下学期必备知识点

用样本的数字特征估计总体的数字特征

1、本均值:

2、样本标准差:

3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。

虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。

4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变

(2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍

(3)一组数据中的值和最小值对标准差的影响,区间的应用;

“去掉一个分,去掉一个最低分”中的科学道理

高二数学下学期知识点总结

1.有向线段的定义

线段的端点A为始点,端点B为终点,这时线段AB具有射线AB的方向.像这样,具有方向的线段叫做有向线段.记作:.

2.有向线段的三要素:有向线段包含三个要素:始点、方向和长度.

3.向量的定义:(1)具有大小和方向的量叫做向量.向量有两个要素:大小和方向.

(2)向量的表示方法:①用两个大写的英文字母及前头表示,有向线段来表示向量时,也称其为向量.书写时,则用带箭头的小写字母,,,来表示.

4.向量的长度(模):如果向量=,那么有向线段的长度表示向量的大小,叫做向量的长度(或模),记作||.

5.相等向量:如果两个向量和的方向相同且长度相等,则称和相等,记作:=.

6.相反向量:与向量等长且方向相反的向量叫做的相反向量,记作:-.

7.向量平行(共线):如果两个向量方向相同或相反,则称这两个向量平行,向量平行也称向量共线.向量平行于向量,记作//.规定: //.

8.零向量:长度等于零的向量叫做零向量,记作:.零向量的方向是不确定的,是任意的.由于零向量方向的特殊性,解答问题时,一定要看清题目中是零向量还是非零向量.

9.单位向量:长度等于1的向量叫做单位向量.

10.向量的加法运算:

(1)向量加法的三角形法则

11.向量的减法运算

12、两向量的和差的模与两向量模的和差之间的关系

对于任意两个向量,,都有|||-|||||+||.

13.数乘向量的定义:

实数和向量的乘积是一个向量,这种运算叫做数乘向量,记作.

向量的长度与方向规定为:(1)||=|

(2)当0时,与方向相同;当0时,与方向相反.

(3)当=0时,当=时,=.

14.数乘向量的运算律:(1))= (结合律)

(2)(+) =+(第一分配律)(3)(+)=+.(第二分配律)

15.平行向量基本定理

如果向量,则//的充分必要条件是,存在唯一的实数,使得=.

如果与不共线,若m=n,则m=n=0.

16.非零向量的单位向量:非零向量的单位向量是指与同向的单位向量,通常记作.

=||,即==(,)

17.线段中点的向量表达式

点M是线段AB的中点,O是平面内任意一点,则=(+).

18.平面向量的直角坐标运算:如果=(a1,a2),=(b1,b2),则

+=(a1+b1,a2+b2);-=(a1-b1,a2-b2);=(a1,a2).

19.利用两点表示向量:如果A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1).

20.两向量相等和平行的条件:若=(a1,a2),=(b1,b2) ,则

=a1=b1且a2=b2.

//a1b2-a2b1=0.特别地,如果b10,b20,则// =.

21.向量的长度公式:若=(a1,a2),则||=.

22.平面上两点间的距离公式:若A(x1,y1),B(x2,y2),则||=.

23.中点公式

若点A(x1,y1),点B(x2,y2),点M(x,y)是线段AB的中点,则x=,y= .

24.重心公式

在△ABC中,若A(x1,y1),B(x2,y2),A(x3,y3),,△ABC的重心为G(x,y),则

x=,y=

25.(1)两个向量夹角的取值范围是[0,p],即0,p.

当=0时,与同向;当=p时,与反向

当= 时,与垂直,记作.

(3)向量的内积定义:=||||cos.

其中,||cos叫做向量在向量方向上的正射影的数量.规定=0.

(4)内积的几何意义

与的内积的几何意义是的模与在方向上的正射影的数量,或的模与在 方向上的正射影数量的乘积

当0,90时,0;=90时,

90时,0.

26.向量内积的运算律:

(1)交换率

(2)数乘结合律

(3)分配律

(4)不满足组合律

27.向量内积满足乘法公式

29.向量内积的应用: