《高一数学上半年总结范文(汇编3篇)》
高一数学上半年总结范文(精选3篇)
高一数学上半年总结范文 篇1
一、复合函数定义:设y=f(u)的定义域为A,u=g(x)的值域为B,若AB,则y关于x函数的y=f[g(x)]叫做函数f与g的复合函数,u叫中间量.
二、复合函数定义域问题:
(一)例题剖析:
(1)、已知f(x)的定义域,求fg(x)的定义域
思路:设函数f(x)的定义域为D,即xD,所以f的作用范围为D,又f对g(x)作用,作用范围不变,所以g(x)D,解得xE,E为fg(x)的定义域。
例1.设函数f(u)的定义域为(0,1),则函数f(lnx)的定义域为_____________。解析:函数f(u)的定义域为(0,1)即u(0,1),所以f的作用范围为(0,1)又f对lnx作用,作用范围不变,所以0lnx1解得x(1,e),故函数f(lnx)的定义域为(1,e)例2.若函数f(x)1x1,则函数ff(x)的定义域为______________。
1x1解析:先求f的作用范围,由f(x),知x1
即f的作用范围为xR|x1,又f对f(x)作用所以f(x)R且f(x)1,即ff(x)中x应满足x1即1,解得x1且x2
1x1x1f(x)1
故函数ff(x)的定义域为xR|x1且x2(2)、已知fg(x)的定义域,求f(x)的定义域
思路:设fg(x)的定义域为D,即xD,由此得g(x)E,所以f的作用范围为E,又f对x作用,作用范围不变,所以xE,E为f(x)的定义域。
例3.已知f(32x)的定义域为x1,2,则函数f(x)的定义域为_________。解析:f(32x)的定义域为1,2,即x1,2,由此得32x1,5所以f的作用范围为1,5,又f对x作用,作用范围不变,所以x1,5
即函数f(x)的定义域为1,5
2例4.已知f(x4)lg2x2x8,则函数f(x)的定义域为______________。
解析:先求f的作用范围,由f(x4)lg2x22x8,知
x22x80
解得x244,f的作用范围为(4,),又f对x作用,作用范围不变,所以x(4,),即f(x)的定义域为(4,)
(3)、已知fg(x)的定义域,求fh(x)的定义域
思路:设fg(x)的定义域为D,即xD,由此得g(x)E,f的作用范围为E,又f对h(x)作用,作用范围不变,所以h(x)E,解得xF,F为fh(x)的定义域。
例5.若函数f(2x)的定义域为1,1,则f(log2x)的定义域为____________。
1解析:f(2)的定义域为1,1,即x1,1,由此得2,2
2f的作用范围为
1,22又f对log2x作用,所以log2x,2,解得x2即f(log2x)的定义域为
12,4
2,4
评注:函数定义域是自变量x的取值范围(用集合或区间表示)f对谁作用,则谁的范围是f的作用范围,f的作用对象可以变,但f的作用范围不会变。利用这种理念求此类定义域问题会有“得来全不费功夫”的感觉,值得大家探讨。
(二)同步练习:
21、已知函数f(x)的定义域为[0,1],求函数f(x)的定义域。
答案:[1,1]
2、已知函数f(32x)的定义域为[3,3],求f(x)的定义域。
答案:[3,9]
3、已知函数yf(x2)的定义域为(1,0),求f(|2x1|)的定义域。
(12,0)(1,3)答案:
2
4、设fxlg2xx2,则ff的定义域为
2x2xA.4,00,4B.4,11,4C.2,11,2D.4,22,4
x22,2x20得,f(x)的定义域为x|2x2。故解:选C.由,解得2x222.xx2x4,11,4。故ff的定义域为4,11,4
2x5、已知函数f(x)的定义域为x([解析]由已知,有1ax3,13x,),求g(x)f(ax)f(a0)的定义域。22a221x3,2a212x32112aa2x3232aa.,
x(1)当a1时,定义域为{x|(2)当
32a32};a2a,即0a1时,有a2x32a};
12a2a,
定义域为{x|(3)当
32a32a,即a1时,有1x32a}.12aa2a2,
定义域为{x|2a故当a1时,定义域为{x|xx32a32};
当0a1时,定义域为{x|a}.
[点评]对于含有参数的函数,求其定义域,必须对字母进行讨论,要注意思考讨论字母的方法。
三、复合函数单调性问题
(1)引理证明已知函数yf(g(x)).若ug(x)在区间(a,b)上是减函数,其值域为(c,d),又函数yf(u)在区间(c,d)上是减函数,那么,原复合函数yf(g(x))在区间(a,b)上是增函数.
证明:在区间(a,b)内任取两个数x1,x2,使ax1x2b
因为ug(x)在区间(a,b)上是减函数,所以g(x1)g(x2),记u1g(x1),
u2g(x2)即u1u2,且u1,u2(c,d)
因为函数yf(u)在区间(c,d)上是减函数,所以f(u1)f(u2),即f(g(x1))f(g(x2)),
故函数yf(g(x))在区间(a,b)上是增函数.(2).复合函数单调性的判断
复合函数的单调性是由两个函数共同决定。为了记忆方便,我们把它们总结成一个图表:
yf(u)ug(x)yf(g(x))增增增减减增减减减增以上规律还可总结为:“同向得增,异向得减”或“同增异减”.(3)、复合函数yf(g(x))的单调性判断步骤:确定函数的定义域;
将复合函数分解成两个简单函数:yf(u)与ug(x)。分别确定分解成的两个函数的单调性;
若两个函数在对应的区间上的单调性相同(即都是增函数,或都是减函数),则复合后的函数yf(g(x))为增函数;若两个函数在对应的区间上的单调性相异(即一个是增函数,而另一个是减函数),则复合后的函数yf(g(x))为减函数。
(4)例题演练例1、求函数ylog212(x2x3)的单调区间,并用单调定义给予证明2解:定义域x2x30x3或x1
单调减区间是(3,)设x1,x2(3,)且x1x2则
y1log2(x12x13)y2log122(x22x23)122(x12x13)(x22x23)=(x2x1)(x2x12)
2∵x2x13∴x2x10x2x120∴(x12x13)>(x22x23)又底数0∴y2y10即y2y1∴y在(3,)上是减函数22121
同理可证:y在(,1)上是增函数[例]2、讨论函数f(x)loga(3x22x1)的单调性.[解]由3x22x10得函数的定义域为
1{x|x1,或x}.
3则当a1时,若x1,∵u3x22x1为增函数,∴f(x)loga(3x22x1)为增函数.
若x13,∵u3x22x1为减函数.
∴f(x)loga(3x22x1)为减函数。
当0a1时,若x1,则f(x)loga(3x22x1)为减函数,若xf(x)loga(3x22x1)为增函数.
13,则
例3、.已知y=loga(2-a)在[0,1]上是x的减函数,求a的取值范围.解:∵a>0且a≠1
当a>1时,函数t=2-a>0是减函数
由y=loga(2-a)在[0,1]上x的减函数,知y=logat是增函数,∴a>1
由x[0,1]时,2-a2-a>0,得a<2,∴1<a<2
当0例4、已知函数f(x2)ax2(a3)xa2(a为负整数)的图象经过点
(m2,0),mR,设g(x)f[f(x)],F(x)pg(x)f(x).问是否存在实数p(p0)使得
F(x)在区间(,f(2)]上是减函数,且在区间(f(2),0)上是减函数?并证明你的结论。
[解析]由已知f(m2)0,得am2(a3)ma20,其中mR,a0.∴0即3a22a90,解得
1273a1273.
∵a为负整数,∴a1.
∴f(x2)x4x3(x2)21,
2242即f(x)x21.g(x)f[f(x)](x1)1x2x,
∴F(x)pg(x)f(x)px4(2p1)x21.
假设存在实数p(p0),使得F(x)满足条件,设x1x2,
22)[p(x12x2)2p1].∴F(x1)F(x2)(x12x2∵f(2)3,当x1,x2(,3)时,F(x)为减函数,
220,p(x12x2)2p10.∴F(x1)F(x2)0,∴x12x2218,∵x13,x23,∴x12x22)2p116p1,∴p(x12x2∴16p10.①
当x1,x2(3,0)时,F(x)增函数,∴F(x1)F(x2)0.
220,∴p(x12x2)2p116p1,∵x12x2∴16p10.由①、②可知p116②
,故存在p116.
(5)同步练习:
1.函数y=logA.(-∞,1)C.(-∞,
3212(x2-3x+2)的单调递减区间是
B.(2,+∞)D.(
32),+∞)
解析:先求函数定义域为(-o,1)∪(2,+∞),令t(x)=x2+3x+2,函数t(x)
在(-∞,1)上单调递减,在(2,+∞)上单调递增,根据复合函数同增异减的原则,函数y=log12(x2-3x+2)在(2,+∞)上单调递减.
答案:B
2找出下列函数的单调区间.
(1)yax(2)y223x2(a1);.
x22x3答案:(1)在(,]上是增函数,在[,)上是减函数。
2233(2)单调增区间是[1,1],减区间是[1,3]。
3、讨论yloga(a1),(a0,且a0)的单调性。
答案:a1,时(0,)为增函数,1a0时,(,0)为增函数。4.求函数y=log13x(x2-5x+4)的定义域、值域和单调区间.
解:由(x)=x2-5x+4>0,解得x>4或x<1,所以x∈(-∞,1)∪(4,+∞),当x∈(-∞,1)∪(4,+∞),{|=x2-5x+4}=R,所以函数的值域是R.因
++
为函数y=log13(x2-5x+4)是由y=log13(x)与(x)=x2-5x+4复合而成,函
52数y=log13(x)在其定义域上是单调递减的,函数(x)=x2-5x+4在(-∞,
)
上为减函数,在[
52,+∞]上为增函数.考虑到函数的定义域及复合函数单调性,y=log13(x2-5x+4)的增区间是定义域内使y=log13(x)为减函数、(x)=x2-5x+4也
为减函数的区间,即(-∞,1);y=log1(x2-5x+4)的减区间是定义域内使y=log313(x)为减函数、(x)=x2-5x+4为增函数的区间,即(4,+∞).
变式练习一、选择题
1.函数f(x)=log
A.(1,+∞)C.(-∞,2)
12(x-1)的定义域是
B.(2,+∞)
2]D.(1,解析:要保证真数大于0,还要保证偶次根式下的式子大于等于0,
x-1>0所以log(x-1)120解得1<x≤2.
答案:D2.函数y=log
12(x2-3x+2)的单调递减区间是
B.(2,+∞)D.(
32A.(-∞,1)C.(-∞,
32),+∞)
解析:先求函数定义域为(-o,1)∪(2,+∞),令t(x)=x2+3x+2,函数t(x)在(-∞,1)上单调递减,在(2,+∞)上单调递增,根据复合函数同增异减的原则,函数y=log12(x2-3x+2)在(2,+∞)上单调递减.
答案:B
3.若2lg(x-2y)=lgx+lgy,则
A.4
yx的值为B.1或D.
1414
C.1或4
yx错解:由2lg(x-2y)=lgx+lgy,得(x-2y)2=xy,解得x=4y或x=y,则有
14=或
xy=1.
答案:选B
正解:上述解法忽略了真数大于0这个条件,即x-2y>0,所以x>2y.所以x=y舍掉.只有x=4y.答案:D
4.若定义在区间(-1,0)内的函数f(x)=log的取值范围为
A.(0,C.(
12122a(x+1)满足f(x)>0,则a
)
B.(0,1)D.(0,+∞)
,+∞)
解析:因为x∈(-1,0),所以x+1∈(0,1).当f(x)>0时,根据图象只有0<
2a<l,解得0<a<答案:A
12(根据本节思维过程中第四条提到的性质).
5.函数y=lg(
21-x-1)的图象关于
1+x1-xA.y轴对称C.原点对称
21-x
B.x轴对称D.直线y=x对称
1+x1-x解析:y=lg(
-1)=lg,所以为奇函数.形如y=lg或y=lg1+x1-x的函数都为奇函数.答案:C二、填空题
已知y=loga(2-ax)在[0,1]上是x的减函数,则a的取值范围是__________.解析:a>0且a≠1(x)=2-ax是减函数,要使y=loga(2-ax)是减函数,则a>1,又2-ax>0a<答案:a∈(1,2)
7.函数f(x)的图象与g(x)=(的单调递减区间为______.
解析:因为f(x)与g(x)互为反函数,所以f(x)=log则f(2x-x2)=log132x(0<x<1)a<2,所以a∈(1,2).
13)的图象关于直线y=x对称,则f(2x-x2)
13(2x-x2),令(x)=2x-x2>0,解得0<x<2.
(x)=2x-x2在(0,1)上单调递增,则f[(x)]在(0,1)上单调递减;(x)=2x-x2在(1,2)上单调递减,则f[(x)]在[1,2)上单调递增.所以f(2x-x2)的单调递减区间为(0,1).答案:(0,1)
8.已知定义域为R的偶函数f(x)在[0,+∞]上是增函数,且f(则不等式f(log4x)>0的解集是______.解析:因为f(x)是偶函数,所以f(-
1212)=0,
)=f(
12)=0.又f(x)在[0,+∞]
12上是增函数,所以f(x)在(-∞,0)上是减函数.所以f(log4x)>0log4x>
9
或log4x<-
12.
12解得x>2或0<x<
.
12答案:x>2或0<x<三、解答题9.求函数y=log13
(x2-5x+4)的定义域、值域和单调区间.
解:由(x)=x2-5x+4>0,解得x>4或x<1,所以x∈(-∞,1)∪(4,+∞),当x∈(-∞,1)∪(4,+∞),{|=x2-5x+4}=R,所以函数的值域是R
++
.因为函数y=log1(x2-5x+4)是由y=log313(x)与(x)=x2-5x+4复合而成,
52函数y=log13(x)在其定义域上是单调递减的,函数(x)=x2-5x+4在(-∞,
)
上为减函数,在[
52,+∞]上为增函数.考虑到函数的定义域及复合函数单调性,y=log13(x2-5x+4)的增区间是定义域内使y=log13(x)为减函数、(x)=x2-5x+4也
为减函数的区间,即(-∞,1);y=log1(x2-5x+4)的减区间是定义域内使y=log313(x)为减函数、(x)=x2-5x+4为增函数的区间,即(4,+∞).10.设函数f(x)=
23x+5+lg3-2x3+2x,
(1)求函数f(x)的定义域;
(2)判断函数f(x)的单调性,并给出证明;
(3)已知函数f(x)的反函数f1(x),问函数y=f1(x)的图象与x轴有交点吗?
--
若有,求出交点坐标;若无交点,说明理由.解:(1)由3x+5≠0且<
323-2x3+2x>0,解得x≠-
53且-
32<x<
32.取交集得-
32<x
.
2(2)令(x)=
3-2x3+2x=-1+
3x+56,随着x增大,函数值减小,所以在定义域内是减函数;
3+2x随着x增大,函数值减小,所以在定义域内是减函数.
又y=lgx在定义域内是增函数,根据复合单调性可知,y=lg(x)=
23x+53-2x3+2x是减函数,所以f
+lg3-2x3+2x是减函数.
(3)因为直接求f(x)的反函数非常复杂且不易求出,于是利用函数与其反函数之间定义域与值域的关系求解.
设函数f(x)的反函数f1(x)与工轴的交点为(x0,0).根据函数与反函数之间定义
-
域与值域的关系可知,f(x)与y轴的交点是(0,x0),将(0,x0)代入f(x),解得x0=
一.指数函数与对数函数
.同底的指数函数yax与对数函数ylogax互为反函数;
(二)主要方法:
1.解决与对数函数有关的问题,要特别重视定义域;
2.指数函数、对数函数的单调性决定于底数大于1还是小于1,要注意对底数的讨论;3.比较几个数的大小的常用方法有:①以0和1为桥梁;②利用函数的单调性;③作差.(三)例题分析:
2例1.(1)若aba1,则logbxyz(2)若23525.所以函数y=f1(x)的图象与x轴有交点,交点为(
-
25,0)。
ba,logba,logab从小到大依次为;
z都是正数,,且x,则2x,y,3y,5z从小到大依次为;
(3)设x0,且ab1(a0,b0),则a与b的大小关系是
(A)ba1(B)ab1(C)1ba(D)1ab
2解:(1)由aba1得
baa,故logbbxyz(2)令235t,则t1,xalgtlogba1logab.
lg2,ylgtlg3,zlgtlg5,
∴2x3y2lgtlg23lgtlg3lgt(lg9lg8)lg2lg30,∴2x3y;
同理可得:2x5z0,∴2x5z,∴3y2x5z.(3)取x1,知选(B).例2.已知函数f(x)ax(a1),
x1求证:(1)函数f(x)在(1,)上为增函数;(2)方程f(x)0没有负数根.
x2证明:(1)设1x1x2,则f(x1)f(x2)aax1x12x11x2ax2x22x21
ax1x1ax12x11x22x21ax23(x1x2)(x11)(x21),
∵1x1x2,∴x110,x210,x1x20,∴
3(x1x2)(x11)(x21)0;
∵1x1x2,且a1,∴ax1ax2,∴aax1x20,
∴f(x1)f(x2)0,即f(x1)f(x2),∴函数f(x)在(1,)上为增函数;(2)假设x0是方程f(x)0的负数根,且x01,则a即ax0x0x02x010,
2x0x013(x01)x013x011,①3x013,∴
3x0112,而由a1知ax0当1x00时,0x011,∴∴①式不成立;
当x01时,x010,∴
3x011,
0,∴
3x0111,而ax00,
∴①式不成立.
综上所述,方程f(x)0没有负数根.
例3.已知函数f(x)loga(ax1)(a0且a1).求证:(1)函数f(x)的图象在y轴的一侧;
(2)函数f(x)图象上任意两点连线的斜率都大于0.
证明:(1)由a10得:a1,
∴当a1时,x0,即函数f(x)的定义域为(0,),此时函数f(x)的图象在y轴的右侧;
当0a1时,x0,即函数f(x)的定义域为(,0),此时函数f(x)的图象在y轴的左侧.
∴函数f(x)的图象在y轴的一侧;
(2)设A(x1,y1)、B(x2,y2)是函数f(x)图象上任意两点,且x1x2,则直线AB的斜率ky1y2x1x2x1x2,y1y2loga(a1)loga(ax1x1x21)logax2aa11,
当a1时,由(1)知0x1x2,∴1a∴0aax1x2ax2,∴0a1ax11,
111,∴y1y20,又x1x20,∴k0;
x1当0a1时,由(1)知x1x20,∴a∴
ax1x2ax21,∴ax11ax210,
1,∴y1y20,又x1x20,∴k0.1∴函数f(x)图象上任意两点连线的斜率都大于0.
a1
高一数学上半年总结范文 篇2
高一上学期数学教学工作总结
时间过得真快,转眼间高一上学期的工作就结束了。
回想起这学期的工作,我感受颇多。这学期,我担任了高一(1)班班主任及高一(1)、(3)班的数学教学工作。首先,我想就数学教学工作谈谈我及我们备课组的一些做法:
一、对学生严格要求,培养良好的学习习惯和学习方法
学生在从初中到高中的过渡阶段,往往会有些不能适应新的学习环境。例如新的竞争压力,以往的学习方法不能适应高中的学习,不良的学习习惯和学习态度等一些问题困扰和制约着学生的学习。为了解决这些问题,我确实下了一翻功夫。
1、改变学生学习数学的一些思想观念,树立学好数学的信心
在开学初,我就给他们指出高中数学学习较初中的要难度大,内容多,知识面广,让他们有一个心理准备。我们班是一个重点班,全班大多数同学初中升高中成绩比较好,这造成一些成绩相对较差学生有自卑感,害怕自己不能学好数学;相反有些成绩较好学生骄傲自大,放松对数学的学习。对此,我给他们讲清楚,大家其实处在同一起跑线上,谁先跑,谁跑得有力,谁就会成功。对较差的学生,给予多的关心和指导,并帮助他们树立信心;对骄傲的学生批评教育,让他们不要放松学习。
第一次月考,全班很多同学考得不好,甚至有个别同学只有三、四十分。有个以前成绩较好女生哭着对我说,她从来没有考过这么低的分,对学好数学没有信心。我耐心给她分析没考好的原因,一是试卷的难度大,二是考查的知识点上课时没能重点掌握,三是没有做好复习工作,教给她要注意的地方。经过她自身的努力,期中考试中,这位女生数学考了96分。一段时间的调整,全班基本上树立了能学好数学的信心。
2、改变学生不良的学习习惯,建立良好的学习方法和学习态度
开始,有些学生有不好的学习习惯,例如作业字迹潦草,不写解答过程;不喜欢课前预习和课后复习;不会总结消化知识;对学习马虎大意,过分自信等。我要求统一作业格式,表扬优秀作业,指导他们预习和复习,强调总结的重要性,并有一些具体的做法,如写章节小结,做错题档案,总结做题规律等。对做得好的同学全班表扬并推广,不做或做得差的同学要批评。在我的严格要求下,大多数同学能很快接受,慢慢的建立起好的学习方法和认真的学习态度。当然,要改变根深蒂固的问题并不容易,这学期还要坚持下去。
二、刻苦钻研教材,不断提高自身的教学教研能力
高一虽然已经教过了几轮,但是每一年的感觉都不一样。从不敢因为教过而有所懈怠。我还是像一位新老师一样认真阅读新课标,钻研新教材,熟悉教材内容,查阅教学资料,适当增减教学内容,认真细致的备好每一节课,真正做到重点明确,难点分解。遇到难以解决的问题,就向老教师讨教或在备课组内讨论。另外,我还积极阅读教学教参书籍及教学论文,如《中学数学教学参考》等,认真学习各种教学方法,并尝试运用到实践教学中去,当然,还有很多是不成熟。
积极参加各种教研活动,如集体备课,校内外听课,教学教研会议。努力提高课堂教学的操作调控能力,语言表达能力,运用多种教学器材,为了节省时间和增加课堂容量,我坚持用多媒体课件上课。课下,根据自己的理解,选题、出检测试卷,这样也提高了我对教材重难点的理解。
积极安排时间做好学生的辅导工作,学生有问题及时解决。
坚持了一个学期,我感觉收获颇多。
三、备课组的精诚合作是取得成绩的关键
如果说高一数学取得了一点成绩的话,那也是我们备课组在教学能力强、经验丰富的何艳文组长的带领下,团结合作的结果。我们的备课组做事非常齐心。我们坚持集体备课。集体备课使我们对教材的认识达到统一,理解更深刻,时间安排一致。除了规定的时间集体备课外,我们还经常在一起讨论,解决问题。其次,统一测试、统一复习资料。平时,备课组安排老师出单元资料、检测题,然后统一使用。在期末复习阶段,组长安排每个老师负责出各章节的复习资料、复习题,资料共享。所以,最后的成绩是我们备课组全体老师共同努力的结果。
四、存在的困惑:
1.书本习题都较简单和基础,而我们的教辅题目偏难,加重了学生的学习负担,而且学生完成情况很不好。课时又不足,教学时间紧,没时间讲评这些练习题。
2.在教学中,经常出现一节课的教学任务完不成的现象,更少巩固练习的时间。勉强按规定时间讲完,一些学生听得似懂非懂,造成差生越来越多。而且知识内容需要补充的内容有:因式分解的十字相乘法;一元二次方程及根与系数的关系;解不等式等知识。
3.虽然经常要求学生课后要去完成教辅上的精选的题目,但是,相当部分的同学还是没办法完成。学生的课业负担太重,有的学生则是学习意识淡薄。
五、今后要注意的几点
1.要处理好课时紧张与教学内容多的矛盾,加强对教材的研究;
2.注意对教辅材料题目的精选;
3.要加强对数学后进生的思想教育。
高一数学上半年总结范文 篇3
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式
顶点坐标
对称轴
y=ax^2
(0,0)
x=0
y=a(x-h)^2
(h,0)
x=h
y=a(x-h)^2+k
(h,k)
x=h
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;
当h>0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h0时,开口向上,当a0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x?-x?|
当△=0.图象与x轴只有一个交点;
当△0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a0(a2} ,{x| x-3>2}
3) 语言描述法:例:{不是直角三角形的三角形}
4) Venn图:
4、集合的分类:
(1) 有限集 含有有限个元素的集合
(2) 无限集 含有无限个元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
即:① 任何一个集合是它本身的子集。A?A
②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)
③如果 A?B, B?C ,那么 A?C
④ 如果A?B 同时 B?A 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
? 有n个元素的集合,含有2n个子集,2n-1个真子集
三、集合的运算
运算类型 交 集 并 集 补 集
定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).
设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
二、函数的有关概念
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
注意:
1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.
相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)
2.值域 : 先考虑其定义域
(1)观察法
(2)配方法
(3)代换法
3. 函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .
(2) 画法
A、 描点法:
B、 图象变换法
常用变换方法有三种
1) 平移变换
2) 伸缩变换
3) 对称变换
4.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
(3)区间的数轴表示.
5.映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作f:A→B
6.分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
补充:复合函数
如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。
二.函数的性质
1.函数的单调性(局部性质)
(1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1
如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.
注意:函数的单调性是函数的局部性质;
(2) 图象的特点
如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.
(3).函数单调区间与单调性的判定方法
(A) 定义法:
○1 任取x1,x2∈D,且x1
○2 作差f(x1)-f(x2);
○3 变形(通常是因式分解和配方);
○4 定号(即判断差f(x1)-f(x2)的正负);
○5 下结论(指出函数f(x)在给定的区间D上的单调性).
(B)图象法(从图象上看升降)
(C)复合函数的单调性
复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”
注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.
8.函数的奇偶性(整体性质)
(1)偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(2).奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
(3)具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
利用定义判断函数奇偶性的步骤:
○1首先确定函数的定义域,并判断其是否关于原点对称;
○2确定f(-x)与f(x)的关系;
○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.
(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;
(3)利用定理,或借助函数的图象判定 .
9、函数的解析表达式
(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2)求函数的解析式的主要方法有:
1) 凑配法
2) 待定系数法
3) 换元法
4) 消参法
10.函数最大(小)值(定义见课本p36页)
○1 利用二次函数的性质(配方法)求函数的最大(小)值
○2 利用图象求函数的最大(小)值
○3 利用函数单调性的判断函数的最大(小)值:
如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);
如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);