首页 > 教学教案 > 教案大全 > 分数乘法教案【优秀10篇】正文

《分数乘法教案【优秀10篇】》

时间:

作为一名为他人授业解惑的教育工作者,时常要开展教案准备工作,教案是教学活动的总的组织纲领和行动方案。那么教案应该怎么写才合适呢?下面是整理的分数乘法教案【优秀10篇】,如果能帮助到您,小编的一切努力都是值得的。

分数乘法教案 篇1

教学目的:使学生通过复习和分数乘法的计算、解答分数乘法应用题以及求倒数,培养学生综合运用知识的能力,发展学生的思维。 .

教学过程

一、基训

A、1、填》、《、=A》B》0

4/5A/B( )A/B

4/5B/A( )B/A

A/54/B( )4/5

2、一个真分数乘以一个假分数,结果大于真分数,对吗?

3、A、B互为倒数,那么1/A、1/B也互为倒数,对吗?

B、 1.分数乘以整数的意义是什么?

2.一个数乘以分数的意义是什么?一个数乘以分数的计算法则是什么?

3.计算带分数的乘法应注意些什么?

4.分数乘法的简便运算可以应用哪些运算定律?

5.解答分数乘法应用题的关键是什么?

6.倒数的意义是什么?

学生回答这些问题时,只要意思说得正确就可以了。有些问题还可以问一些与之相

关的问题,如运算定律的表达式以及字母可以表示什么数等等。

二、综合练习

1.找1。

甲是乙的35 。乙是甲的35 。

甲比乙的。35 多1。乙比甲的35 少1。

甲的35 和乙同样多。

学生独立判断,集体订正。让学生说说是怎样判断的。教师可再补充几题:

2.做口算练习。

3.求下面各数的倒数。

2/7 1/9 6 20 0.6

学生独立解答,教师巡视,发现问题及时纠正。

4.小红体重42千克,小云体重40千克,小明的体重是小红和小云体重和的1/2,三人共重多少?

5.已知a4/3=11/12b=3/3c,a、b、c都不是0,谁大?

三、小结(略)

四、补充作业。

分数乘法教案 篇2

设计说明

1.重视学生的实践操作。

动手实践是学生学习数学的主要方式之一,它能加深学生对抽象的数学知识的理解。在本设计中,教师为学生提供充分的动手操作的机会,学生通过分一分、算一算等活动,进一步体会分数乘整数的意义,同时还可以进一步体会“分数乘整数时,分子和整数相乘,分母不变”的道理。

2.实现数学学习的个性化。

本设计充分挖掘学生潜力,留给学生充足的时间和空间,放手让学生联系已有知识经验,自主探究计算方法,极大程度地发挥了学生学习的主体性和主动性。学生在自主探究中产生了多种算法,让学生通过尝试、感悟、体验、探索,总结出“能约分的先约分,再计算比较简便”这一最优的计算方法。学生自主构建知识,充分体现了“不同的。人学习不同的数学”的理念。

课前准备

教师准备 PPT课件

学生准备 彩色纸 剪贴画 长方形纸条

教学过程

第1课时 分数乘整数的意义及其计算方法

⊙复习引入,提出问题

1.把8+8+8+8+8改成乘法算式。(8×5)

2.把0.5+0.5+0.5改成乘法算式。(0.5×3)

3.列式计算。

(1)5个12是多少?(12×5)

(2)12个1.5是多少?(1.5×12)

4.提出问题。

师:3个是多少,能不能用算式×3来表示呢?今天,我们就一起来学习分数乘法。

(板书课题:分数乘整数的意义及其计算方法)

设计意图:通过复习整数乘法和小数乘法,引出分数乘法问题,不仅自然地过渡到下一个环节,而且激发了学生探究新知的欲望。

⊙合作交流,探究新知

1.探究分数乘整数的意义,初步感知分数乘整数的计算方法。

课件出示问题:1个

占整张纸条的,3个

占整张纸条的几分之几?

(1)引导学生分析问题。

你们打算用什么方法来解决这个问题?怎样获得最后的计算结果?

(2)小组内讨论、交流。

(3)全班汇报。

预设

①图示法计算。

把一个长方形纸条看作单位“1”,把它平均分成5份,其中的一份就是一个

,是,3份就是3个,如下图:

3个是。

②加法计算。

求3个

占整张纸条的几分之几,就是求3个相加的和是多少。

列式:++==。

③乘法计算。

通过尝试计算,发现结果和其他算法的结果相同,说明几个相同分数相加也可以用乘法计算。

×3=++===

(教师在学生汇报的过程中,适时提问,引导学生完整表述计算过程)

师:同学们真厉害!这就是我们今天要学习的新知识——分数乘整数。

分数乘法教案 篇3

教学目标

1.进一步理解分数乘整数的意义。

2.掌握分数乘整数的计算法则。

3.能够熟练准确地计算分数乘整数的计算题。

教学重点

分数乘整数的计算方法,能正确计算。

教学难点

理解先约分再计算能使计算简便。

教学过程

一、复习分数乘整数的意义及计算法则

二、出示例题

1.出示3/4×6

教师引导学生能不能先约分再计算。

学生得出结论后教师讲解先约分后计算的格式。

你会填吗?

1/6+1/6+1/6+1/6=1/6×()

3/4+3/4+3/4+3/4+3/4

=3/4×()

2/25+2/25+2/25

=2/25×()

在计算分数乘整数时,用分数的分子(),分母()。

学生先用计算法则进行计算后进行约分。

学生进行计算并比较两种方法那种方法简单。

复习巩固分数乘整数的计算方法。

进一步应用分数乘整数的计算方法,体验先约分再计算。

教师指导与教学过程

学生学习活动过程

设计意图

2.练习

完成课本第3页的做一做

三、综合练习

1.练一练第1题

2.教师指导完成练一练第2题

学生完成后还可以估一估一个月、一年能滴多少水。

四、布置作业

完成练一练第3、4、5题

学生独立完成做一做

学生通过涂一涂,可以得到结果为10/15,再约分得到2/3。学生也可以先约分再计算。

学生根据老师的指导进行计算,并解释结果的实际意义。

借助图形语言,加深学生对分数乘整数的意义的理解。

巩固分数乘整数的计算方法,培养学生的节约意识。

板书设计:

分数乘整数

复习题:出示例题3/4×6

教学过程。 篇4

(一)设疑激趣,提出问题

1、把9+9+9+9+9改成乘法算式。

2、把O.2+0.2+O.2+O.2改成乘法算式。

3、(1)口答整数乘法的意义。

(2)求几个相同加数和的简便运算。

4、列式计算。

(1)5个12是多少?

12×5=

(2)12个1.5是多少?

1.5×12=

(3)3个是多少?

5、提出问题。

教师:求3个是多少,能不能用算式×3来表示呢?今天,我们就一起来学习分数乘法。

板书课题:分数乘法(一)。

(二)引导探索,解决问题。

l、分数与整数相乘的意义。

(1)出示题目。

1个占1张彩纸的,3个占这张彩纸的几分之几?

(2)探索交流。

①用图示表示。

1个图案占这张彩纸的。3个图案占这张彩张的。

②用加法计算。

③用乘法计算。

(3)引导发现。

教师:求几个相同的分数和,可以用乘法计算。分数与整数相乘的意义与整数乘法的意义相同。

2、分数与整数相乘的计算方法。

(1)涂一涂,算一算。呈现题目。

(2)引导观察算式和结果。教师:在中,你是怎么算出得数的?算式中的数字与得数的'数字有什么关联?让学生认真观察算式数字,思考其中的关联,并和同学交流,说一说自己有什么发现。在这一基础上,师生共同探索其中的联系。

(3)总结计算方法。让学生用自己的语言表述分数与整数相乘的计算方法。

(4)试一试。

3、约分。

教师:再计算时你有什么体会?让学生回答问题,同学之间进行交流,通过算式比较。最后,使全班学生明白:

(1)在计算过程中,能约分的要先约分。

(2)最后结果应该是最简分数。

(三)巩固练习完成课文第3页“练一练”。

1、第1题。

完成后要将算式得数和涂的结果进行比较,并说明计算中的要点。

2、第2题。利用教材提供的素材,教育学生节约用水。

3、第3题。

(1)让学生独立完成。

(2)同学之间互相交流、校对,发现问题,及时反馈。

(3)说一说计算的步骤、方法:

①分子与整数相乘作分子,分母不变。

②能约分的要先约分,再计算。

4、第4题。

(1)学生独立完成。

(2)说一说,你是如何解决问题的。爸爸和小红一天分别吃多少→爸爸和小红一天共吃多少→爸爸和小红3天共吃多少。

5、第5题。让学生都算出结果,再观察各组题目的算式及结果,然后说一说有什么发现。

(四)作业选用课时作业。

分数乘法教案 篇5

教学目标:

能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

知识目标:继续学习整数乘以分数的计算方法,让学生能够计算整数的几分之几是多少,学生能够熟练准确的计算出一个整数乘以不同分数的结果。

情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

教学重难点:

学生能够熟练的计算出整数乘以不同分数的结果。

教学方法:

师生共同归纳和推理

教学准备:

教学参考书、教科书

教学过程:

一、复习导入:

教师出示教学板书,请学生计算下列分数乘法运算题。

3/11×3 9/16×12 21×5/14

教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?

学生寻找完毕,纷纷举手准备回答问题。

教师提问学生回答问题。(整数乘以分数,整数乘以分子,分母不变。注意两种约分方式。)

二、讲授新课:

教师出示课本例题:小红有6个苹果,淘气的苹果是小红的1/2;笑笑的苹果是小红的1/3,淘气和笑笑各有几个苹果?

教师让学生思考这个例题,并对学生进行提问。

学生自己动手填完课本例题上的方格。

教师提问学生说一说自己是怎样计算的?

(学生1:6×1/2=6×1/2≤3个;学生2:6×1/3=6×1/3≤2个)

教师和学生对比这两个题目的区别和联系。学生初步理解整数乘以分数的数学意义。

三、巩固练习:

做课本5页试一试,36的1/4和1/6分别是多少?

注意让学生体验求一个整数的几分之几是多少的数学意义。

四、课堂小结

同学们,这一节课你学到了哪些知识?(提问学生回答)

板书设计:

6×1/2=6×1/2≤3个;6×1/3=6×1/3≤2个

整数乘以分数的数学意义:就是求整数的几分之几是多少?

分数乘法教案 篇6

教学目标:

1、使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

2、培养学生分析能力,发展学生思维。

教学重点:

理解题中的单位1和问题的关系。

教学难点:

抓住知识关键,正确、灵活判断单位1。

教具准备:

多媒体课件。

教学过程:

一、复习引入(激发兴趣,引入铺垫)

1、列式计算。

(1)20的 是多少?

(2)6的 是多少?

二、自主探究(自主学习,探讨问题)

1、教学例1。

出示例1:学校买来100千克白菜,吃了 ,吃了多少千克?

(1)指名读题,说出条件和问题。

(2)引导学生画出线段图,并在线段图上标出题目中的条件和问题。

先画一条线段,表示100千克白菜。

吃了 ,吃了谁的 ?(100千克白菜)要把100千克白菜平均分成5份,吃了4份,怎样表示?

教师边说边画出下图

(3)分析数量关系,启发解题思路。

A.请同学们仔细观察图画,并认真想一想,吃了 ,是吃了哪个数量的 ?

B.分组讨论交流:依据吃了100千克的 把哪个量看作单位1呢?为什么?你是怎样想的?

(4)列式计算。

A.学生完整叙述解题思路。

B.学生列式计算,教师板书: (千克)

C.写出答话,教师板书:答:吃了80千克。

(5)总结思路。

根据以上分析,让学生讨论一下解题顺序:吃了 吃了谁的 谁是多少(已知)谁的 是多少乘法。

(6)反馈练习。(14页)1-3题,做完后订正。说一说你是怎样想的?

2、阅读课本:把书中的想的过程和线段图认真看一下,不懂提问。

三、拓展总结(应用拓展,盘点收获)

1、判断下面每组中的两个量,应该把谁看作单位1。

(1)乙是甲的 ,甲是乙的 。

(2)甲是乙的 ,乙是甲的 倍。

2、练习四1、2题,完成在练习本上,然后订正。

3、操作:画出体育小组的人数是美术小组的 倍的线段图自己补充条件和问题并解答。

分数乘法教案 篇7

本单元教学分数乘法,是在理解了分数的意义,掌握了分数加、减法计算的基础上编排的。能进一步理解分数的意义,为教学分数除法打下基础。教学内容以计算为主,包括分数与整数相乘、分数与分数相乘。教学要求是理解算理、掌握算法,能应用于分数连乘计算和解决实际问题中去;在探索算法、总结法则的过程中发展数学思考的能力。下表是全单元教学内容的编排。

分数与整数相乘

用乘法求几个相同分数的和(例1)

用乘法求整数的几分之几是多少(例2)

求一个数的几分之几是多少的实际问题(例3) 练习八

分数乘分数

分数乘分数(例4、例5)

分数连乘(例6) 练习九

倒数

倒数的意义,求倒数的方法(例7) 练习十

整理与练习

教材在编排上有以下特点。

第一,以计算法则的教学为编排主线,把运算的意义、方法以及实际应用的教学有机结合在一起,优化了全单元的内容结构。

乘法运算的范围从整、小数扩大到分数,其意义、算法以及实际应用都有较大的发展。因此,分数乘法的意义、计算法则、解决实际问题是本单元的三个重要内容。教材以计算为主线,在研究算法的过程中体会运算意义,通过运算概念的完善、发展,进一步理解算法;在解决实际问题的背景中教学计算知识,应用学到的算法解决实际问题。意义、法则、应用三方面的有机结合,优化了知识结构,能充分发挥教学的功能和价值。如,例1从做绸花要用多少米绸带的实际问题引出分数乘整数的计算问题,把原来的乘法概念扩展到分数范围,激活已有的知识经验;应用同分母分数加法的知识,体会并得出分数乘整数的计算方法,既解决了做绸花的实际问题,又解决了新的计算课题。又如,例2为解决做绸花的实际问题列算式101/2和102/5,联系现实的数量关系体会这些算式的具体含义,得出求一个数的几分之几是多少,可以用乘法计算的结论,发展了乘法的意义。在计算两个乘法算式时,巩固了分数与整数相乘的算法。

第二,知识发展线索清晰,前后联系紧密,各道例题的教学任务明确。下图是本单元教材里的计算知识结构图。

先教学整数乘分数,后教学分数乘分数,符合简单到复杂的编排原则。而且,整数乘分数还能与整数乘法建立联系,应用整数乘法知识,为分数乘法的教学开好头。

整数乘分数先是求几个相同分数的和,再是求整数的几分之几是多少。前者在运算意义上与整数乘法一致,算法是例1的重点。正由于运算意义和整数乘法一致,可以把整数乘分数转化成同分母分数相同,体会并得出整数乘分数的计算法则。后者在运算意义上有很大的扩展,乘法不仅能求几个相同加数连加的和,还能求一个数的几分之几是多少,这是例2的教学重点。而例2的算法,在前面已经解决了。

分数乘分数先教学基础知识,再培养计算技能。例4和例5要把求一个数的几分之几是多少的认识迁移到分数乘分数,深入理解分数乘法的意义,还要解决分数乘分数的算法,并形成统摄分数乘整数、分数乘分数的计算法则。所以,这两道例题着重教学基础知识。例6教学分数连乘,巩固计算法则的同时,培养分子、分母交叉约分的技能。

第三,编排倒数知识,为分数除法作准备。

分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。

一、 例1着重教学分数与整数相乘的算法。

首次教学分数乘法,教材除了从实际问题引出,还尽量与整数乘法靠近,充分利用已有的知识、经验,构建新运算的意义与算法。创造迁移的条件,引导学生主动写出分数乘法算式;营造探索的氛围,放手让学生创新分数乘整数的方法。

例1的第(1)个问题求3个相同分数的和。在代表1米绸带的线条图上,已经表示出做1朵绸花用的绸带3/10米,要求学生继续涂色表示做3朵绸花所用的米数。通过涂色,体会实际问题里的数学问题是求3个3/10是多少,看到做3朵绸花用的绸带是9/10米,激活已有的乘法概念以及同分母分数加法的知识。于是,一些学生会列加法算式3/10+3/10+3/10,另一部分学生会列乘法算式33/10或3/103。比较加法算式和乘法算式,实现原有运算概念的迁移:求几个相同分数相加的和,用乘法算比较简便。分数乘法算式和整数乘法算式一样,不区分被乘数和乘数,求3个3/10是多少,算式33/10和3/103都可以。让学生研究分数乘整数的算法,把分子相加、分母不变加工成分子与整数相乘,分母不变,获得新的计算方法。尤其是在方框里填数: 3/10+3/10+3/10=□+□+□/10=□□/10,经历分子相加转化成分子与整数相乘的过程,建构了新的计算方法。

例1的第(2)个问题求做5朵同样的绸花一共用绸带的米数,不再从分数加法过渡到分数乘法,直接写出乘法算式,并用分数乘整数的方法计算。把例1的学习成果作为例2的教学资源,进一步体验应用分数乘整数解决相同分数连加的问题比较简便,巩固运算的意义和方法。这道例题还指导了分数乘法中的约分,兔子卡通先把分子与整数相乘,再把积约分化简。大象卡通先约分,再相乘。前一种方法学生比较熟悉,在计算分数加、减法时,经常先按法则计算,再化简结果。后一种方法由于先约分,算得的积是最简分数,而且相乘也更简单。要指导学生理解并喜欢大象卡通那样的算法,对下面继续教学分数乘分数有好处。

二、 例2着重教学用乘法求一个数的几分之几是多少。

10朵绸花的1/2是几朵?10朵绸花的2/5是几朵?这些问题学生在三年级(下册)认识分数里曾经解答过。那时的解答是通过102、1052这些整数乘除运算进行的。例2再次教学这些实际问题,要应用分数乘法的知识解答,概括出求一个数的几分之几是多少,用乘法计算这个结论,并用于解决其他求一个数的几分之几是多少的问题中去。

在例2之前,乘法只用于求相同加数的和。教学例2之后,乘法还可以求一个数的几分之几。这是乘法概念的扩展。为了帮助学生理解乘法的新含义,例2在编写时注意了以下三点:

首先是加强分数的意义。用10朵花平均分成2份,其中1份是红花的图画,对10朵的1/2作出具体而形象的解释。一方面让学生在体验10朵的1/2的意义时,想到102=5这种算法。另一方面又利用十分熟悉的102促进对10的1/2的理解。教学10朵的2/5,让学生在图画里圈出绿花,经历把10朵花平均分成5份,其中2份是绿花的操作过程,以及1052的计算过程,体会10的2/5的含义。

然后是讲述新知识。教材说:求10朵的1/2是多少,可以用乘法计算。并写出算式101/2。还说求10朵的2/5是多少,可以用102/5。在分数意义的平台上,指出分数乘法的实际应用。利用101/2和102/5这两个实例,概括出求一个数的几分之几是多少,用乘法计算。这个结论发展了原来的乘法概念,使乘法有了新的应用领域。

沟通新旧算法的联系,更好地理解分数乘法。如果比较算式101/2和102,能够发现它们都是求10的1/2是多少,都是把10平均分成2份。虽然运算不同,意义却是相通的。同样,算式102/5和1052都是把10平均分成5份,求其中的2份,都是求10的2/5是多少。例题在教学分数乘法的初始阶段,安排这些可对比的内容,让学生反复体验分数乘法。

练一练加强概念。第1题先涂色表示12个圆的1/3、20个方格的4/5,感受一个数的几分之几的意义。再列式121/3、204/5计算,进行较抽象的思考并用数学方法解决求一个数的几分之几的问题。两者结合,加强了分数乘法的概念。第2题用求一个数的几分之几描述图示的数量关系,在现实问题数学问题数学方法的过程中,进一步体验求一个数的几分之几是多少,用乘法计算。

例2列出的算式都是分数乘整数,它们的计算方法已在例1里教学。所以101/2、102/5都可以让学生计算,要提醒他们先约分,再相乘,尽量使计算过程简便些。

三、 例3用分数乘法解决实际问题。

例2以及练习八第6~11题都是求一个数的几分之几是多少的实际问题。编排例3继续教学解决实际问题,是因为比一个数多(或少)几分之几是较难理解的数量关系,而这些关系又普遍存在于实际问题中。无论从知识的教学还是从知识的应用考虑,都需要单独编排例题。

解答例3的关键是理解红花比黄花多1/10、绿花比黄花少2/5的含义。从本质上讲,它们仍然是一个数的几分之几,但是比较难懂。教材用条形图呈现三种花的朵数关系,表示黄花朵数的直条刚好是10格,表示红花的直条比黄花多1格,形象地表达了红花比黄花多1/10。例题还通过红花比黄花多的是多少朵的1/10这个问题,引导学生仔细研究图意,正确理解红花比黄花多的朵数相当于黄花的1/10。从而明白,求红花比黄花多多少朵,就是求黄花的1/10是多少朵,即50朵的1/10是多少。

比一个数少几分之几是比一个数多几分之几的变式,安排在试一试里教学。在例3的条形图上,如果把表示黄花的直条平均分成5份(每2格看成1份),绿花比黄花少这样的2份。所以,绿花比黄花少2/5的含义是: 绿花比黄花少的朵数相当于黄花的2/5。教材要求学生仿照红花比黄花多1/10那样,在条形图的直观支持下,分析并理解数量关系。通过独立解决变式的问题,实现比一个数多几分之几向比一个数少几分之几的认知迁移。

第44页第14题分析比一个数多(少)几分之几的意义是概念专项练习。在说分数的意义时,要先指出把什么看作单位1,平均分成多少份,然后指出什么是这样的几份。如皮球的个数比足球多2/5,应该把足球个数看作单位1的量,把它平均分成5份,皮球比足球多的个数相当于这样的2份。这题要把数量关系式补充完整,数量关系式可以视为一种数学模型。从解题角度上看数量关系式,它有助于列出算式或列出方程;从思维角度上看数量关系式,把文字叙述的数量关系改写成关系式,压缩了思维过程,精简了数学语言,表达了思考结果;从教学角度上看数量关系式,它能进一步加深理解概念,及时暴露认识的偏差。如果对比一个数多(少)几分之几的理解不正确,一定会在写出的数量关系式上有所表现。仍以皮球的个数比足球多2/5为例,如果在等号右边填出皮球的个数,就是概念错误造成的。解答第15~17题,都要以正确的数量关系为前提,教材编排第14题的意图是十分清楚的。

四、 例4、例5构建分数乘法的计算法则。

分数乘分数的计算方法并不复杂,记住和应用算法也不难。但是,理解为什么可以这样计算却很不容易,是再次应用分数概念开展演绎推理的过程。教材编排两道例题教学分数乘分数,充分发挥数、形结合的作用,让学生体会分子相乘、分母相乘是合理的。

构建分数乘法的计算法则,要把分数乘整数的算法纳入分数乘分数的算法之中,使前者成为一般算法里的特殊情况。教材在两道例题后的试一试里完成这个内容的教学。

例4是首次感知分数乘分数的意义和算法。先在长方形里涂色表示它的1/2,再画斜线表示1/2的几分之几,让学生在图上体会数量关系和运算的含义,看出结果。教材依次安排了三项学习活动:第一项活动是分别说出两个长方形中画斜线部分各占1/2的几分之几,引出新的数学问题: 1/2的1/4、1/2的3/4。得出这两个数学问题要仔细观察每个图里把1/2平均分成几份,斜线画了其中的几份,就能知道左图中画斜线的部分占1/2的1/4,右图中画斜线的部分占1/2的3/4。第二项活动要列出1/2的1/4、1/2的3/4的算式。应用初步形成的分数乘法概念,从求一个数的几分之几用乘法计算推理得出1/2的1/4可以用1/21/4计算,1/2的3/4可以用1/23/4计算。在写两道算式时,体会一个数不仅是整数,也能是分数,进一步完善了分数乘法的概念。第三项活动从图中看出两道算式的积。因为1/2的1/4是长方形纸的1/8,1/2的3/4是长方形纸的3/8,所以1/21/4=1/8、1/23/4=3/8。在看图与写出积的过程中,初步感知分子相乘的得数是积的分子,分母相乘的得数是积的分母。

例5继续体会分数乘分数的算法。已给出了两道算式2/31/5和2/34/5,还在两个长方形里涂色表示了2/3。第一项学习活动是画图计算给出的两道算式。在画图前要先想算式的意义,才会正确画图和看到算式的积。如2/31/5是求2/3的1/5是多少,要把表示2/3的那个部分平均分成5份,用斜线画出其中的1份。斜线部分占长方形的2/15,2/15就是2/31/5的积。又如2/34/5是求2/3的4/5是多少,要把表示2/3的那块涂色部分平均分成5份,用斜线画出其中的4份,由此得到2/34/5的积是8/15。第二项活动在乘法算式的右边写出积,让学生在写2/15和8/15的时候,感受积的分子2和8是两个乘数的分子的乘积,积的分母15是两个乘数的分母的乘积。

两道例题的教学线索不同,认知程度也不同。例4经历看图写式得积的过程,感受分子相乘、分母相乘的可能性。例5通过看式画图得积体验分子相乘、分母相乘的合理性。两道例题都让学生感受分数乘分数的算法,逐渐形成计算法则。

第55页应用整数都能写成分母是1的分数这个知识,把2/113和45/6都改写成分数乘分数的形式,使分子相乘的积作分子,分母相乘的积作分母也适用于分数乘整数的计算,成为分数乘法的计算法则。

五、 例6教学分数连乘的算法和技巧。

例6用线段图表示数量关系,整理解题思路。先画一条线段表示一班做的绸花朵数,由于二班做的朵数是一班的8/9,所以把表示一班朵数的线段平均分成9份,便于画出表示二班朵数的线段。教材要求学生画表示三班做花的朵数,画的时候要分析3/4的意思,理解这里是把二班做的朵数看作单位1。通过画图就能很快知道应先算二班做的朵数。

例题先分步列式解答,再列综合式解答。教学要以综合算式为主,因为在综合算式里要讲分数连乘的算法。关于分数连乘计算有两点内容:一是各个乘数的分子连乘的得数是积的分子,各个乘数的分母连乘的得数是积的分母。二是要尽量先约分,再相乘。就是说,要把分子、分母之间能够进行的约分都完成以后,相乘就简单了。两点内容学生都能接受,先充分地约分可能会不大适应。教学不必在为什么这样约分上纠缠,学生有计算结果应是最简分数的认识,能够理解计算过程中要尽可能地约分。教学要清楚地展示约分活动,如整数135和分母9之间的约分,分子8和分母4的约分。在练一练里还要指导不相邻的分子与分母的约分,如22/275/119/10中的分母27和分子9的约分,帮助学生逐渐掌握约分的技巧。

六、 例7教学倒数的知识。

倒数的知识主要是两点: 一点是倒数的概念,另一点是求倒数的方法。前一点是基础知识,后一点是计算分数除法所需要的基本技能。建立倒数概念之后,求一个数的倒数就容易了。因此,例7十分重视概念的形成以及对概念的准确把握。

教学从寻找乘积是1的分数开始。在8个分数中能找到3对乘积是1的分数,这项貌似游戏的活动凸显了倒数是乘积为1的两个数之间的关系,这也是教学倒数概念必须掌握的内涵。教材里三个卡通的交流,说的都是两个分数相乘的积是1,突出了倒数概念的一个内涵。下面的文字叙述强调两个数互为倒数,还以3/8和8/3为例,帮助学生体会互为倒数的意思指甲是乙的倒数,乙也是甲的倒数,这是倒数概念的又一个内涵。

求已知数的倒数分三个层次教学: 先求3/5、2/5等分数的倒数,然后求5、1等整数的倒数,最后是0没有倒数。观察互为倒数的两个分数,发现它们的分子、分母刚好互换位置,一方面进一步体会了互为倒数的两个数的乘积是1,另一方面找到了写出一个数的倒数的方法。写整数的倒数,从概念出发,寻找与整数相乘等于1的那个分数,体会如果把整数看作分母是1的分数,那么它的倒数也是调换分子、分母位置得到的那个数。教材要求学生理解0没有倒数,并作出相应的解释。这是因为0和任何数相乘都得0,不存在与0相乘能得到1的数。

第51页第4题里有四组数。第(1)组数都是真分数,它们的倒数都是假分数。第(2)组数都是大于1的假分数,它们的倒数都是真分数。第(3)组数的分子都是1,它们的倒数都是整数。第(4)组数都是整数,它们的倒数都是几分之一的数。让学生发现这些规律,是为了巩固倒数概念,熟练掌握求倒数的`方法。

分数乘法教案 篇8

设计说明

1、重视学生的实践操作。

动手实践是学生学习数学的主要方式之一,它能加深学生对抽象的数学知识的理解。在本设计中,教师为学生提供充分的动手操作的机会,学生通过分一分、算一算等活动,进一步体会分数乘整数的意义,同时还可以进一步体会“分数乘整数时,分子和整数相乘,分母不变”的道理。

2、实现数学学习的个性化。

本设计充分挖掘学生潜力,留给学生充足的时间和空间,放手让学生联系已有知识经验,自主探究计算方法,极大程度地发挥了学生学习的主体性和主动性。学生在自主探究中产生了多种算法,让学生通过尝试、感悟、体验、探索,总结出“能约分的先约分,再计算比较简便”这一最优的计算方法。学生自主构建知识,充分体现了“不同的人学习不同的数学”的理念。

课前准备

教师准备 PPT课件

学生准备 彩色纸 剪贴画 长方形纸条

教学过程

第1课时 分数乘整数的意义及其计算方法

⊙复习引入,提出问题

1、把8+8+8+8+8改成乘法算式。(8×5)

2、把0.5+0.5+0.5改成乘法算式。(0.5×3)

3、列式计算。

(1)5个12是多少?(12×5)

(2)12个1.5是多少?(1.5×12)

4、提出问题。

师:3个是多少,能不能用算式×3来表示呢?今天,我们就一起来学习分数乘法。

(板书课题:分数乘整数的意义及其计算方法)

设计意图:通过复习整数乘法和小数乘法,引出分数乘法问题,不仅自然地过渡到下一个环节,而且激发了学生探究新知的欲望。

⊙合作交流,探究新知

1、探究分数乘整数的意义,初步感知分数乘整数的计算方法。

课件出示问题:1个

占整张纸条的,3个

占整张纸条的几分之几?

(1)引导学生分析问题。

你们打算用什么方法来解决这个问题?怎样获得最后的计算结果?

(2)小组内讨论、交流。

(3)全班汇报。

分数乘法教案 篇9

教学目标:

1、知识与技能 使学生掌握分数乘法的计算方法,并能运用这个方法进行相关计算;使学生能分辨清楚先乘后加减的运算顺序,并能熟练地应用乘法运算定律进行简便计算。

2、过程与方法 回顾、整理、练习、订正。

3、情感态度与价值观 培养学生良好的计算习惯和分析解决问题的能力。

教学重点:

引导学生找准单位1,分析应用题的数量关系。

教学难点:

让学生正确、独立地分析应用题的数量关系。

教具运用:

课件

教学过程:

一、创设情境,导入复习。

出示:我们学校的图书室里有故事书400本,连环画是故事书的 ,作文书是连环画的 。学校图书室里有有多少本作文书?

1、学生独立解决。

2、汇报交流做法。

3、提示课题:分数乘法的整理和复习

二、回顾整理,建构网络。

1、让学生说一说这个单元你学到了哪些知识?(小组内说一说,适当的时机师生进行点评)

2、展示自己整理好的分数乘法的知识。

3、小组合作,优化整理。(课件演示)

分数乘整数

求几个相同分数和的简便运算

计算方法:分子相乘的积作分子,分母相乘的积作分母。(能约分的先约分再计算)

一个数乘分数

求一个数的几分之几是多少

分数乘加、乘减及乘法运算定律的灵活运用

灵活运用运算定律,可以使计算简便。

乘法交换律:a.b=b.a;

乘法结合律(a.b).c=a.(b.c);

乘法分配律(a+b)。c=a.c+ b.c;

乘法分配律的逆运算:a.c+b.c=(a+b)。c

解决问题

1、求一个数的几分之几 是多少。

2、稍复杂的求一个数的几分之几是多少。

关系式:单位1的量(一个数)问题所对应的几分之几=所求问题

三、自主检评,完善提高。

1、计算下面各题,说一说分数乘法是怎样计算的?

2、下面各题怎样计算比较简便?

3、(1)骆驼驼峰中贮藏的脂肪,相当于体重的 ,一头体重225千克的骆驼,驼峰里含有多少脂肪?

(2)一头体重225kg的骆驼,驮着比它体重还多 的货物。它驮着的货物重多少千克?

4、(1)食堂运来24吨的煤,第一次用去 ,第二次用去的是第一次的 ,第二次用去多少吨?

(2)食堂运来24吨的煤,第一次用去 ,第二次用去的这批煤的 ,第二次用去多少吨?

(3)食堂运来24吨的煤,第一次用去 ,第二次用去的是第一次的2倍少3吨,第二次用去多少吨?

四、课堂小结。

分数乘法教案 篇10

1、分数乘法

(1)分数乘整数

教学目标:

1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

3、 引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点:引导学生总结分数乘整数的计算法则。

教学过程:

一、复习

1、出示复习题。

(1)列式并说出算式中的被乘数、乘数各表示什么?

5个12是多少? 9个11是多少? 8个6是多少?

(2)计算:

1/6+2/6 +3/6 = 3/10+3/10 +3/10 =

2、引出课题。

++这题我们还可以怎么计算?今天我们就来学习分数乘法。

二、新授

1、 利用3/10 +3/10 +3/10 教学分数乘法。

(1) 这道加法算式中,加数各是多少?(都是)

(2)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法,3/10 3)

(3)3/10 +3/10 +3/10 =9/10,那么 3/10+ 3/10+3/10 =3/10 3,所以 3/103=9/10

2、 出示例1,画出线段图,学生独立列式解答。

(1) 引导学生看图,理解人跑一步的距离相当于袋鼠跳一下的 ,就是把袋鼠跳一下的距离即这一整条线段看作单位1。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

(2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的,那么人跑3步的距离相当于袋鼠跳一下的几分之几?就是求3个 是多少?(列式: 3 = )

3、 结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。

4、 练习:练习完成做一做第2题。

5、 教学例2

(1)出示 6,学生独立计算。

(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。

(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

三、练习

1、 完成做一做的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

2、 做一做第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)

四、作业

练习二第1、2、4题。

(2)一个数乘分数

教学目标:

1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。

2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。

教学难点:推导算理,总结法则。

教学过程:

一、导入

1、计算下列各题并说出计算方法。

2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。

3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。

二、新课

1、教学例3

(1)出示条件和问题:每小时粉刷这面墙的,小时粉刷这面墙的几分之几?根据公式工作效率工作时间=工作总量,学生列式:

(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的,第二步再涂出小时粉刷这面墙的面积,即 的 ,由此得出这个乘法算式表示 的 是多少?

(3)根据直观的操作结果,得出=,根据刚才操作的过程和结果推导出计算方法:= = 。

(4)提出问题:小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。

2、相关练习:练习二第5题。

3、小结一个数乘分数的意义和计算方法。

(1)意义:一个数乘分数,表示求这个数的几分之几是多少。

(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。

4、教学例4

(1)引导学生分析题意,根据速度时间=路程的。数量关系列出算式。

(2)先让学生独立计算,再交流计算的方法,明确分数乘分数也可以先约分再乘。通过展示学生的计算过程,进一步明确约分的书写格式。

(3)学生独立解答5分钟飞行多少千米?,讲评中介绍分数乘整数的另一种格式。

5、巩固练习:P11做一做(注意提醒学生要先观察能否约分,再着手计算)。

三、练习

1、练习三第6题

(1)求2枝长多少分米,就是求2个 是多少?算式: 2

(2)求 枝或 枝长多少分米,就是求 的 是多少,或的是多少。

2、练习三第9题。(学生讨论交流,说说错在哪里,结合学生易犯的错误讲解)

四、作业

练习二第3、7、8、10题。

(3)分数混合运算和简便运算

教学目标:

1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。

3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。

教学重点:

理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。

教学过程:

一、复习

1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)

2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)

3、观察下面各题,先说说运算顺序,再进行计算。

(1)362+15 (2)56+73 (3)15(34-27)

二、新授

1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。

(1) +(2)- (3)-(4)+

2、复习整数乘法的运算定律

(1)乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc)

乘法分配律:(a+b)c=ac+bc

(2)这些运算定律有什么用处?你能举例说明吗?

(3)用简便方法计算:2574 0.36101

3、推导运算定律是否适用于分数。

(1)鼓励学生大胆猜测并勇于发表自己的个人意见

(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)

(3)各四人小组汇报讨论和计算结果。

4、教学例6

(1)出示: ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)

(2)出示: +,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 4和 4都能先约分,这样能使数据变小,方便计算)

(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。

三、练习

P14做一做:先让学生观察题目中的已知数的特点,说说怎样做简便?应用了什么运算定律。然后再独立完成练习。

(4)练习课

教学目标:

1、使学生掌握分数乘加、乘减混合运算的顺序,能正确地进行计算。

2、在学习的过程中培养学生的合作意识及认真、仔细的良好学习习惯。

教学重点:熟练掌握运算定律,灵活、准确、合理地进行简便计算。

教学难点:熟练掌握运算定律,准确、合理地进行简便计算。

教学过程:

一 、复习

1、复习分数混合运算的运算顺序。

2、复习乘法的简便运算定律

乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc)

乘法分配律:(a+b)c=ac+bc

二、巩固练习

1、练习三第1题:应用运算定律进行简便计算(引导学生仔细观察算式特点,正确运用定律进行计算)。

2、练习三第三题:分数混合运算(提醒学生注意运算顺序,如果可以应用韵律进行计算的题目也可以选择用简便方法计算,如:-= (1- ); (5- )既可以按运算顺序先算小括号里面的,也可以应用乘法分配律进行计算。

3、练习三第2题:一朵花要用 张纸,一个同学做了9朵,列式 9,另一个同学做了11朵,列式 11,他们一共做了 9+ 11(朵),学生还可能这样列式: (9+11),引导学生发现,这种列式实际上就是乘法分配律的两种形式。

4、练习三第8题:改错题,这两道题主要都是运算顺序错误,学生在纠错的同时也巩固了先乘除、后加减的运算顺序。

5、练习三第6题:要求学生观察题目,能用简便算法的要用简便算法。

6、练习三第4、5、9题:先让学生分析题意,再列式计算。计算中提醒学生注意运用定律使计算简便。

三、布置作业

完成相关的练习册。

(5)分数乘法整理与复习

教学目的:

1.分数乘法的计算方法

2.分数乘加、乘减混合运算

3.熟练掌握运算定律,并运用运算定律进行简便计算。

教学重点:

1.分数乘法的计算方法

教学难点:

运算定律进行简便计算

教学过程:

一、复习分数乘法的计算方法

30 ===

60 ===

12 ==

二、复习分数乘加、乘减混合运算。

+ 1- (1- )

7+ 120(+)

三、复习分数的运算定律并进行简便计算。

+12- - 48+48 24( - )

四、相关文字题复习

1、4的与的4倍的和是多少? 2、 的 比它的 多多少?

五、相关的解决问题。

1、一块长方形纸夹板长米,宽是长的,这块纸夹板的周长和面积分别是多少?

2、某菜场运来茄子800千克,第一天卖完了全部的,第一天卖了多少千克,还剩下多少茄子没有卖?

3、 一个平行四边形,底是米,高是底的 ,这个平行四边形的面积是多少?

六、拓展练习。