首页 > 教学教案 > 初中教案 > 初一教案 > 七年级数学上册教案最新17篇正文

《七年级数学上册教案最新17篇》

时间:

作为一名无私奉献的老师,可能需要进行教案编写工作,教案有助于顺利而有效地开展教学活动。那要怎么写好教案呢?

七年级上册数学人教版教案 1

1.2有理数1.2.2数轴。这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。

二、学生学习情况分析

(1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述;

(2)学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析;

(3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。

三、设计思想

从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。

四、教学目标

(一)知识与技能

1、掌握数轴的三要素,能正确画出数轴。

2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

(二)过程与方法

1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意

识。

2、对学生渗透数形结合的思想方法。

(三)情感、态度与价值观

1、使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主

义观点。

2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得

到和谐美的享受。

五、教学重点及难点

1、重点:正确掌握数轴画法和用数轴上的点表示有理数。

2、难点:有理数和数轴上的点的对应关系。

六、教学建议

1、重点、难点分析

本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。

2、知识结构

有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下:

定义规定了原点、正方向、单位长度的直线叫数轴

三要素原点正方向单位长度

应用数形结合

七、学法引导

1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。

2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。

八、课时安排

1课时

九、教具学具准备

电脑、投影仪、三角板

十、师生互动活动设计

讲授新课

(出示投影1)

问题1:三个温度计。其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度。

师:三个温度计所表示的温度是多少?

生:2℃,-5℃,0℃.

问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。(小组讨论,交流合作,动手操作)

师:我们能否用类似的图形表示有理数呢?

师:这种表示数的图形就是今天我们要学的内容—数轴(板书课题).

师:与温度计类似,我们也可以在一条直线上画出刻度,标上读

数,用直线上的点表示正数、负数和零。具体方法如下

(边说边画):

1.画一条水平的直线,在这条直线上任取一�

师:在此基础上,给出数轴的定义,即规定了原点、正方向和单

位长度的直线叫做数轴。

进而提问学生:在数轴上,已知一点p表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么p对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可。

【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力。

师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习

尝试反馈,巩固练习

(出示投影3).画出数轴并表示下列有理数:

1、1.5,-2.2,-2.5,,,0.

2.写出数轴上点a,b,c,d,e所表示的数:

请大家回答下列问题:

(出示投影4)

(1)有人说一条直线是一条数轴,对不对?为什么?

(2)下列所画数轴对不对?如果不对,指出错在哪里?

【教法说明】此组练习的目的是巩固数轴的概念。

十一、小结

本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究。

十二、课后练习习题1.2第2题

十三、教学反思

1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

七年级数学上册人教版教案 2

知识目标

使学会解比例的方法,进一步理解和掌握比例的基本性质。

能力目标

联系的生活实际创设情境,体现解比例在生产生活中的广泛应用。

情感目标

利用所学知识解决生活中的问题,进一步培养综合运用知识的能力及情度、价值观的发展。

重点

使学会解比例的方法,进一步理解和掌握比例的基本性质。

难点

体现解比例在生产生活中的广泛应用。

教学过程

教学预设个性修改

目标导学,复习激趣,自主合作,汇报交流,变式训练

创境激疑一、旧知铺垫

1、什么叫做比例?

2、什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?

3、比例有几种表示形式?

合作探究二、探索新知

1、出示埃菲尔铁挂图

2、出示例题

(1)、读题。

(2)、从这道题里,你们获得了哪些信息?

(3)、在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)

(4)、这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)

(5)、还有一个条件是什么?(埃菲尔铁塔的高是320米)

(6)、我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)

(7)、这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。

(8)、根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书x:320=1:10)

(9)、这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?

(10)、不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)

(11)、指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做? (指名板演)

(12)、为什么可以写成这样的等式呢?10x=320×1(根据比例的基本性质)

(13)、对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)

(14)、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的。意义。

(15)、我们解出的答案对不对呢?怎么知道?可以怎样检验? (把结果代入题目中看看对应的比的比值是不是能成比例。)

(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。

2、教学例3

过渡:我们知道比例还有另一种表示形式,当是=这样形式的时候,又该怎么解呢?

(1)、出示例3,问:这题与刚刚那个比例有哪些不同?

(2)、解这种比例时,要注意些什么呢?(找出比例的外项、内项)

(3)、在这个比例里,哪些是外项?哪些是内项?

(4)、解答(提问:你们是怎么解答的?)、检验。

(5)、 =

拓展应用在一个比例中,两个外项的乘积正好互为倒数,已知一个内向是3,另一个内项是多少?

总结这节课主要学习了什么内容?

作业布置教材43页5题

板书设计解比例

例3、解比例=

解:2.4 =1.5×6

=( )×( )

( )

教学札记

人教版七年级上册数学教案 3

本节课是在学生学会了运用等式的基本性质解一元一次方程的基础上学习的,但是在解题过程中,书写理由太费劲,移项的出现使得解一元一次方程有了更简洁的表示方法和解法,但是移项实际上就是等式的性质(在等式的两边同加伙同减同一个代数式,所的结果仍然是等式)的另一种说法,因而移项概念的得出与运用等式的性质解方程是密不可分的,所以我在前置自学中设计了运用等式的性质解一元一次方程的几个题目,并让学生课间做到黑板上,为学生自主探究移项概念做好了铺垫工作;因为这节课的重点是移项法则的应用,因而我又设计了几个巩固移项概念的题组,通过小组合作学习、自主学习等多种方式来解决问题,对移项的概念和法则加深理解和应用;然后自学课本例题,掌握解一元一次方程的基本步骤和算理,并加以巩固应用,让学生体会出解题步骤的简洁性并通过达标测试中的应用问题,使学生进一步体会到解一元一次方程在解决实际问题中的重要性。

我在设计问题时,本想在导入新课时设计一个贴近学生生活的实际问题,最后在学习完解一元一次方程后,让学生运用所学知识解决这个问题,但是考虑到时间问题没有设计,因而对于加强学生学习数学的应用意识做得还不够好。

七年级数学上册教案 4

《有理数的惩罚》教学设计

一、学情分析:

1、学生的知识技能基础:学生在小学已经学习过非负有理数的四则运算以及运算律。在本章的前面几节课中,又学习了数轴、相反数、绝对值的有关概念,并掌握了有理数的加减运算法则及其混和运算的方法,学会了由运算解决简单的实际问题,具备了学习有理数乘法的知识技能基础。

2、学生的活动基础:在相关知识的学习过程中,学生已经历了探索加法运算法则的活动,并且通过观察"水位的变化",运用有理数的加法法则解决了一些实际问题,从而获得了较为丰富的数学活动经验,同时在以前的学习中,学生曾经历了合作学习和探索学习的过程,具有了合作和探索的意识。

二、教材分析:

教科书基于学生已掌握了有理数加法、减法运算法则的基础上,提出了本节课的具体学习任务:发现探索有理数的乘法法则,了解倒数的概念,会进行有理数的运算。

本节课的数学目标是:

1、经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力;

2、学会进行有理数的乘法运算,掌握确定多个不等于零的有理数相乘的积的符号方法以及有一个数为零积是零的情况:

三、教学过程设计:

本节课设计了六个环节:第一环节:问题情境,引入新课;第二环节:探索猜想,发现结论;第三环节:验证明确结论;第四环节:运用巩固,练习提高;第五环节:课堂小结;第六环节:布置作业。

第一环节:问题情境,引入新课

问题:(1)观察教科书给出的图片,分析教科书提出的问题,弄清题意,明确已知是什么,所求是什么,让学生讨论思考如何解答。

(2)如果用正号表示水位上升,用负号表示水位下降,讨论四天后,甲水库水位的变化量的表示法和乙水库水位变化量的表示法。

设计意图:培养学生从图形语言和文字语言中获取信息的能力,感受用数学知识解决实际问题,体验算法多样化,并从第二种算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)从而引出课题:有理数的乘法。

第二环节:探索猜想,发现结论

问题:(1)由课题引入中知道:4个-3相加等于-12,可以写成算式

(-3×4)=-12,那么下列一组算式的结果应该如何计算?请同学们思考:

(-3)×3=_____;

(-3)×2=_____;

(-3)×1=_____;

(-3)×0=_____。

(2)当同学们写出结果并说明道理时,让学生通过观察这组算式等号两边的特点去发现积的变化规律,然后再出示一组算式猜想其积的结果:

(-3)×(-1)=_____;

(-3)×(-2)=_____;

(-3)×(-3)=_____;

(-3)×(-4)=_____。

教前设计意图:以算式求解和探究问题的形式引导学生逐步深入的观察思考,从负数与非负数相乘的一组算式中发现规律后,猜想负数与负数相乘的积是多少,通过对两组算式的观察,归纳,概括出有理数的乘法法则,并用语言表述之,以培养学生的观察能力,猜想能力,能力和表述能力。

教后事项:(1)本环节的设计理念是学生通过观察思考,亲身经历感受乘法法则的发现过程,并在合作交流中互相补充,完善结论。但在实际过程中,学生对结论的表述有困难,或者表达不准确,不全面,对于这些问题,不能求全责备,而应循循善诱,顺势引导,帮助学生尽可能简练准确的表述,也不要担心时间不足而代替学生直接表述法则。

(2)展示两组算式时,注意板书艺术,把算式竖排,并对齐书写,这样易于学生观察特点,发现规律。

第三环节:验证明确结论

问题:针对上一环节探究发现的有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘,任何数与零相乘,积仍为零。进行验证活动,出示一组算式由学生完成。

4×(-4)=_____;

4×(-3)=_____;

4×(-2)=_____;

4×(-1)=_____;

(—4)×0=_____;

(—4)×1=_____;

(—4)×2=_____;

(—4)×(-1)=_____;

(—4)×(-2)=_____。

教前设计意图:这个环节的设计一方面是因为它是合情推理的`必要环节,另一方面是为了让学生知道从特例归纳得到的结论不一定适合

一般情况,所以要加以验证和证明它的正确性。同时,验证的过程本身就是对有理数乘法法则的练习和熟悉过程。

教后反思事项:(1)教科书中没有这个环节的要求,但在教学中应该设计这个环节,确实让学生体验经历验证过程。

(2)本环节的重点是验证乘法法则的正确性而不是运用乘法法则计算。所以在验证过程中,既要用乘法法则计算,又要加法法则计算,真正体现验证的作用和过程。

(3)在用乘法法则计算时,要注意其运算步骤与加法运算一样,都是先确定结果的符号,再进行绝对值的运算。另外还应注意:法则中的“同号得正,异号得负”是专指“两数相乘而言的,”不可以运用到加法运算中去。

第四环节:运用巩固,练习提高

活动内容:

(1)1。计算:

⑴(-4)×5; ⑵(5-)×(-7);

⑶(-3÷8)×(-8÷3);⑷(-3)×(-1÷3);

(2)2。计算:

⑴(-4)×5×(-0。25); ⑵(-3÷5)×(-5÷6)×(-2);

3。“议一议”:几个有理数相乘,因数都不为零时,积的符号怎样确定?有一个因数为零时,积是多少?

(4)计算:

⑴(-8)×21÷4 ; ⑵4÷5×(-25÷6)×(-7÷10);

⑶2÷3×(-5÷4); ⑷(-24÷13)×(-16÷7)×0×4÷3;

⑸5÷4×(-1。2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。

教前设计意图:对有理数乘法法则的巩固和运用,练习和提高。

教后反思事项:(1)学生先自主尝试解决,全班交流,教师点拨要注意格式规范,一开始对每一步运算应注明理由,运算熟练后,可不要求书写每一步的理由;

(2)例2讲解之后,要启发学生完成"议一议"的内容,鼓励学生通过对例2的运算结果观察分析,用自己的语言表达所发现的规律,学生有困难时,教师可设置如下一组算式让学生计算后观察发现规律,而不应代替学生完成这个任务。

(-1)×2×3×4=_____;

(-1)×(-2)×3×4=_____;

(-1)×(-2)×(-3)×4=_____;

(-1)×(-2)×(-3)×(-4)=_____;

(-1)×(-2)×(-3)×(-4)×0=_____。

通过对以上算式的计算和观察,学生不难得出结论:多个数相乘,积的符号由负因数的个数,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。当然这段语言,不需要让学习背诵,只要理解会用即可。

第五环节:感悟反思课堂小结

问题

1.本节课大家学会了什么?

2.有理数乘法法则如何叙述?”

3.有理数乘法法则的探索采用了什么方法?

4.你的困惑是什么

教前设计意图:培养学生的口头表达能力,提高学生的参与意识。激励学生展示自我。

教后反思事项:学生小结时,可能会有语言表达障碍或表达不流畅,但只要不影响运算的正确性,则不必强调准确记忆,而应鼓励学生大胆发言,同时教师可用准确的语言适时的加以点拨。

第六环节:布置作业

巩固作业:教科书知识技能1、2;问题解决1;联系扩广1

预习作业;略

四、教学反思:

1、设计条理的问题串,使观察、猜想、验证水到渠成

2、相信学生的探索能力。本节课的内容适合学生探索,只要教师适当引导,学生具有能力探索出有理数的乘法法则的,不需要教师代替,也不能代替。

3、合理使用多媒体教学手段可以弥补课堂时间的不足,但绝不能代替必要的板书

七年级数学上册教案 5

教学目标:

1、了解平移的概念,会进行点的平移,理解平移的性质,能解决简单的平移问题

2、培养学生的空间观念,学会用运动的观点分析问题。

重点:

平移的概念和作图方法。

难点:

平移的作图。

教学过程

一、观察图形形成印象

生活中有许多美丽的`图案,他们都有着共同的特点,请同学们欣赏下面图案。

观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?学生思考讨论,借助举例说明。

二、提出新知实践探索

平移:

(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

(2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是对应点。

(3)连接各组对应的线段平行且相等。图形的这种变换,叫做平移变换,简称平移

探究:设计一个简单的图案,利用一张半透明的纸附在上面,绘制一排形状,大小完全一样的图案

引导学生找规律,发现平移特征

三、典例剖析深化巩固

例如图,(1)平移三角形ABC,使点A运动到A`,画出平移后的ΔABC

先观察探讨,再通过点的平移,线段的平移总结规律,给出定义

探究活动可以使学生更进一步了解平移

四、巩固练习

课本33页:1,2,4,5,6,7

五、小结:

在平移过程中,对应点所连的线段也可能在一条直线上,当图形平移的方向是沿着一边所在直线的方向时,那么此边上的对应点必在这条直线上。2利用平移的特征,作平行线,构造等量关系是接7题常用的方法。

六、作业

课本P30页习题5。4第3题

人教版七年级数学上册教案 6

一、内容特点

在知识与方法上类似于数系的第一次扩张。

也是后继内容学习的基础。

内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。

二、设计思路

整体设计思路:无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。

学习对象----实数概念及其运算;学习过程----通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的`方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。

具体过程:首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。

最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。

第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。

第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。

第五节:用计算器开方:会用计算器求平方根和立方根。

经历运用计算器探求数学规律的活动,发展合情推理的能力。

第六节:实数。

总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

三、一些建议

1、注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。

2、鼓励学生进行探索和交流,重视学生的分析、概括、交流等能力的考察。

3、注意运用类比的方法,使学生清楚新旧知识的区别和联系。

4、淡化二次根式的概念。

七年级数学上册教案 7

教学目的:

(一)知识目标:

1.了解正数和负数是怎样产生的。

2.知道什么是正数和负数。

3.理解数0表示的量的意义。

(二)能力目标:

1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量化方法。

2.会用正、负数表示具有相反意义的量。

(三)情感态度与价值观:

通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:

知道什么是正数和负数,理解数0表示的量的意义。

教学难点:

理解负数,数0表示的量的意义。

教学方法:

师生互动

教学过程:

一、创设情境:

.活动:请两名同学分别记录一周的每天的最高气温,老师念,学生写: -5℃、3℃、2℃、-1℃、-6℃、7℃、4℃、

比一比,怎样记录又快又简便!

[师]其实,在我们的。生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

二、新课:

1、自然数的产生、分数的产生。

2、章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

3、正数、负数的定义:

4、判断下列各说法是否正确,错误的改正过来.

(1)单项式-xy2的系数是0,次数是2.【-1、3】

(2)单项式27a2的系数是2,次数是9.【√】22xny

(3)单项式-的系数是-,次数是n+1.【√】 33

5、请你写出系数为-1,含有x、y,次数为4的所有单项式。

6、课本第56页练习1、2题.

四、课堂小结

1.什么叫单项式?举例说明.

2.单独的一个数或一个字母是单项式吗?x是单项式吗?为什么?

3.什么叫单项式的系数?什么叫单项式的次数?举例说明.

五、作业布置

1.课本第59页至第60页,习题

2.第1、2、8题.

七年级上册数学人教版教案 8

一、基本情况分析

1、学生情况分析:

本学期我继续承担七(1)(2)两班的数学教学,两班学生进行了一个学期的学习,虽然期末考试成绩可以,但是发现两班学生尖子生少,中等生较多,差生较多,上课很多学生不认真,学习态度、学习习惯不是很好,学生整体基础参差不齐,没有养成良好的学习习惯,对多数学生来说,简单的基础知识还不能有效掌握,成绩稍差。学生的逻辑推理、逻辑思维能力,计算能力要有待加强,还要提升整体成绩,适时补充课外知识,拓展学生的知识面,抽出一定的时间强化几何训练,培养学生良好的学习习惯。全面提升学生的数学素质。

2、教材分析:

第五章、相交线与平行线:本章主要在第四章“图形认识初步”的基础上,探索在同一平面内两条直线的位置关系:①、相交②、平行。本章重点:垂线的概念和平行线的判定与性质。本章难点:证明的思路、步骤、格式,以及平行线性质与判定的应用。

第六章、实数:了解算术平方根、平方根、立方根的概念,会用根号表示平方根与立方根。会求一个数的平方根与立方根。2.了解无理数、实数的概念,实数与数轴一一对应的关系,能估计无理数的大小,能进行实数的计算。本章重点:平方根、立方根的概念,会用根号表示平方根与立方根。会求一个数的平方根与立方根。本章难点:实数的概念,实数与数轴一一对应的关系

第七章、平面直角坐标系:本章主要内容是平面直角坐标系及其简单的应用。有序实数对与平面直角坐标系的点一一对应的关系。本章重点:平面直角坐标系的理解与建立及点的坐标的确定。本章难点:平面直角坐标系中坐标及点的位置的确定。

第八章、二元一次方程组:本章主要学习二元一次议程(组)及其解的概念和解法与应用。本章重点:二元一次方程组的解法及实际应用。本章难点:列二元一次方程组解决实际问题。

第九章、不等式与不等式组:本章主要内容是一元一次不等式(组)的解法及简单应用。本章重点:不等式的基本性质与一元一次不等式(组)的解法与简单应用。本章难点:不等式基本性质的理解与应用、列一元一次不等式(组)解决简单的实际问题。

第十章、数据的收集、整理与描述:本章主要学习收集、整理和分析数据,并根据数据对调查对象作出正确的描述。本章重点:调查的意义、特点及分类,利用扇形图、频数分布直方图和频数拆线图描述数据。本章难点:绘制数据统计图及如何利用各种统计图对调查对象作出正确的描述。

二、教学目标和要求

(一)知识与技能

1、获得数学中的基本理论、概念、原理和规律等方面的知识,了解并关注这些知识在生产、生活和社会发展中的应用。

2、学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题解决实际问题。体验几何定理的探究及其推理过程并学会在实际问题进行应用。

3、初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维习惯。

(二)过程与方法

1、采用思考、类比、探究、归纳、得出结论的方法进行教学;

2、发挥学生的主体作用,作好探究性活动;

3、密切联系实际,激发学生的学习的积极性,培养学生的类比、归纳的能力。

(三)情感态度与价值观

1、理解人与自然、社会的密切关系,和谐发展的主义,提高环境保护意识。

2、逐步形成数学的基本观点和科学态度,为确立辩证唯物主义世界观奠定必在的基础。

三、提高教学质量的主要措施

1.本学期教学工作重点仍然是加强基础知识的教学和基本技能的训练,在此基础上努力培养学生的分析问题和解决问题的能力。所以要抓好课前备课,这就要求我要认真研究教材,把握每节课的教学重点和难点,课堂上注重教学方法,努力让不同的学生都学到有用的数学。

2.依据课程标准、教材要求和学生实际,设计出突出重点,突破难点,解决关键的整体优化教学方法。教学方法的运用要切合学生的实际,要有利于培养学生的良好学习习惯,有利于调动不同层次的学生的学习积极性,有利于培养学生的自学能力、思维能力和解决问题的能力。采取多种教学方法,如多让学生动手操作,多设问,多启发,多观察等,增加学习主动性和学习兴趣,体现学生的主体性。教学过程中尽量采取多鼓励、多引导、少批评的教育方法。这样通过多种教学方法,充分调动学生的学习积极性,使学生形成主动学习的意识,教学中通过鼓励性的语言激励学生,使水同层次的学生都能得到鼓励,以此增强他们的学习信心。

3.根据学生的不同学习状况,给不同的学生布置不同的作业,对于学习比较的学生,给他们留一些与课堂教学内容相关的基础性的作业,检验他们对当堂教学内容的掌握情况;对于学习成绩比较好的学生,留一些综合运用或拓展能力方面的作业,检查他们对知识的灵活运用和综合运用情况。

4.利用课堂教学培养学生养成良好的学习习惯。要求学生课前自学,通过预习“我”知道了什么,还有什么不知道或还有什么我看不懂,在书上做出记号。以便上课时重点听讲。课堂上,要求学生养成良好的听课习惯:课前做好上课的准备,听课时要集中精神,专心听讲,积极思考问题,认真回答问题,不懂的及时提出来。要求课后养成复习的习惯,每天都要把所学的知识进行复习,可在头脑中回顾当天所学知识,对于忘掉的或回想不起来的,可翻书重新记忆。另外,隔段时间还要把前面所学的知识再行回顾,以免时间长了忘记了。要求学生每天认真完成作业,作业要书写工整,解题规范,杜绝抄袭现象,使学生养成良好的做作业习惯。

5.关注待进生,不歧视待进生,尊重、关心、爱护他们,使他们感到老师和同学对他们的关心。设置一些简单的问题,由他们回答,增强他们的自信心。利用中午休息时间或课外活动时间为他们辅导,尽量使他们跟上教学进度。另外,对他们要有耐心,对于他们提出的问题,耐心解答。

6.培优补差。对于中上等生,利用课后阅读材料和课外资料丰富他们的头脑,增加他们的知识面,通过专题训练,提高他们的综合分析问题的能力和解决问题的能力。鼓励他们利用课余时间通过课外资料或上网学习等方式拓宽他们知识面和视野,不懂就问,养成勤学好问的习惯,以提高他们的各方面的能力。对于待进生多关心和帮助,在课堂上多提问他们一些简单的问题,多鼓励他们,以增强他们的信心。

四、教学进度表(略)

七年级上册数学人教版教案篇五

一、教学目标

1、知识目标:掌握数轴三要素,会画数轴。

2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;

3、情感目标:向学生渗透数形结合的思想。

二、教学重难点

教学重点:数轴的三要素和用数轴上的点表示有理数。

教学难点:有理数与数轴上点的对应关系。

三、教法

主要采用启发式教学,引导学生自主探索去观察、比较、交流。

四、教学过程

(一)创设情境激活思维

1.学生观看钟祥二中相关背景视频

意图:吸引学生注意力,激发学生自豪感。

2.联系实际,提出问题。

问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

师生活动:学生思考解决问题的方法,学生代表画图演示。

学生画图后提问:

1.马路用什么几何图形代表?(直线)

2.文中相关地点用什么代表?(直线上的点)

3.学校大门起什么作用?(基准点、参照物)

4.你是如何确定问题中各地点的位置的?(方向和距离)

设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。

问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?

师生活动:

学生思考后回答解决方法,学生代表画图。

学生画图后提问:

1.0代表什么?

2.数的符号的实际意义是什么?

3.-75表示什么?100表示什么?

设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。

问题3:生活中常见的温度计,你能描述一下它的结构吗?

设计意图:借助生活中的常用工具,说明正数和负数的作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。

问题4:你能说说上述2个实例的共同点吗?

设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。

(二)自主学习探究新知

学生活动:带着以下问题自学课本第8页:

1.什么样的直线叫数轴?它具备什么条件。

2.如何画数轴?

3.根据上述实例的经验,“原点”起什么作用?

4.你是怎么理解“选取适当的长度为单位长度”的?

师生活动:

学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。

设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。

至此,学生已会画数轴,师生共同归纳总结(板书)

①数轴的定义。

②数轴三要素。

练习:(媒体展示)

1.判断下列图形是否是数轴。

2.口答:数轴上各点表示的数。

3.在数轴上描出下列各点:1.5,-2,-2.5,2,2.5,0,-1.5。

(三)小组合作交流展示

问题:观察数轴上的点,你有什么发现?

数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示-2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和-a的点进行同样的讨论。

设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。

(四)归纳总结反思提高

师生共同回顾本节课所学主要内容,回答以下问题:

1.什么是数轴?

2.数轴的“三要素”各指什么?

3.数轴的画法。

设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。

(五)目标检测设计

1.下列命题正确的是()

a.数轴上的点都表示整数。

b.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

c.数轴包括原点与正方向两个要素。

d.数轴上的点只能表示正数和零。

2.画数轴,在数轴上标出-5和+5之间的所有整数,列举到原点的距离小于3的所有整数。

3.画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有_______个。4.在数轴上点a表示-4,如果把原点o向负方向移动1.5个单位,那么在新数轴上点a表示的数是________。

五、板书

1.数轴的定义。

2.数轴的三要素(图)。

3.数轴的画法。

4.性质。

六、课后反思

附:活动单

活动一:画一画

钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

思考:如何简明地用数表示这些地理位置与学校大门的相对位置关系?

活动二:读一读

带着以下问题阅读教科书p8页:

1.什么样的直线叫数轴?

定义:规定了_________、________、_________的直线叫数轴。

数轴的三要素:_________、_________、__________。

2.画数轴的步骤是什么?

3.“原点”起什么作用?__________

4.你是怎么理解“选取适当的长度为单位长度”的?

练习:

1.画一条数轴

2.在你画好的数轴上表示下列有理数:1.5,-2,-2.5,2,2.5,0,-1.5

活动三:议一议

小组讨论:观察你所画的数轴上的点,你有什么发现?

归纳:一般地,设a是一个正数,则数轴上表示数a在原点的____边,与原点的距离是____个单位长度;表示数-a的点在原点的____边,与原点的距离是____个单位长度。

练习:

1.数轴上表示-3的点在原点的_______侧,距原点的距离是______;表示6的点在原点的______侧,距原点的距离是______;两点之间的距离为_______个单位长度。

2.距离原点距离为5个单位的点表示的数是________。

3.在数轴上,把表示3的点沿着数轴负方向移动5个单位长度,到达点b,则点b表示的数是________。

附:目标检测

1.下列命题正确的是()

a.数轴上的点都表示整数。

b.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

c.数轴包括原点与正方向两个要素。

d.数轴上的点只能表示正数和零。

2.画数轴,在数轴上标出-5和+5之间的所有整数。列举到原点的距离小于3的所有整数。

3.画数轴,观察数轴,在原点左边的点有_______个。

4.在数轴上点a表示-4,如果把原点o向负方向移动1.5个单位,那么在新数轴上点a表示的数是________。

七年级数学上册教案 9

教学目标

【知识与能力目标】

1、巩固理解有理数的概念;

2、掌握数轴的意义及构成特点,明确其在实际中的应用;

3、会用数轴上的点表示有理数。

【情感态度价值观目标】

通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

教学重难点

【教学重点】

数轴的意义及作用。

【教学难点】

数轴上的点与有理数的直观对应关系。

课前准备

《数学》人教版七年级上册,自制课件

教学过程

一、探索新知(投影展示)

问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。

学生结合上述问题分组讨论,明确以下问题:

1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?

2、举例说明生活中类似的事例;

3、什么叫数轴?它有哪几个要素组成?

4、数轴的用处是什么?

5、你会画数轴吗并应用它吗?

“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;

结论:正数、0和负数可以用一条直线上的点表示出来。

3、展示温度计图形,比较其与图1、2-1的共同点和不同点:

共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;

不同点:温度计是竖直的,方向感不直观。

4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)

(1)数轴的构成三要素:原点、方向、单位长度;

(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;

5、归纳

(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的。点在原点的边,与原点的距离是个单位长度。

(2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。

二、例题分析

例1.先画出数轴,然后在数轴上表示下列各数:

-1、5,0,-2,2,-10/3

例2、数轴上与原点距离4个长度单位的点表示的数是。

三、巩固训练

课本p10练习

自我检测

(1)数轴的三要素是;

(2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位;

(3)数轴上表示5与-2的两点之间距离是单位长度,有个点;

(4)如图,a、b为有理数,则a0,b0,ab

四、课堂小结

(1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。

(2)数轴的三要素:原点、正方向、单位长度。

(3)数学思想:数形结合的思想。

五、作业

1、课本14页习题1、2

2、完成“自我检测”

3、个性补充

⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。

⑵画一条数轴,并表示出如下各点:1000,5000,-20xx。

⑶在数轴上标出到原点的距离小于3的整数。

⑷在数轴上标出-5和+5之间的所有整数。

人教版七年级上册数学教案 10

教学目标:

1、通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系。

2、培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想。

3、养成学生积极主动的学习态度和自主学习的方式。

重点难点:

重点:认识点、线、面、体的几何特征,感受它们之间的关系。

难点:在实际背景中体会点的含义。

教学准备:

圆柱、圆锥、正方体、长方体、球、棱柱、棱锥模型

教学过程:

一、创设情境

多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体。

设计意图:从西湖风光引入新课,引导学生观察生活中的美妙画面,不仅能激发学生的学习兴趣,而且让学生对点、线、面、体有了初步的形象认识,感知知识来源于生活,如“点”是没有大小的,学生难以真正理解,可以借助湖中的小船、地图上用点表示城市的位里这些生活实例,让学生体会到“点”的含义。

二、讨论(动态研究)

课件演示:灿烂的'星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?

观察、讨论,让学生共同体会“点动成线、线动成面、面动成体,让学生举出更多的“点动成线、线动成面、面动成体”的例子。

小组合作学习,学生利用学具完成教科书第114页练习(动手转一转)

设计意图:教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力。学生自己动手实践操作,加深学生印象,化解难度。

三、讨论(静态研究)

教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等。

让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子。

四、探索

1、课本112页观察,并回答它的问题。

引导学生观察后得出结论:面与面相交得到线,线与线相交得到点。

2、113页练习(提供实物,议一议,动手摸一摸),思考以下问题:

这些立体图形是由几个面围成的,它们都是平的吗?圆锥的侧面与底面相交成几条线,是直线还是曲线?正方体有几个顶点?经过每个顶点有几条边?

让学生自己体会并小组讨论得出点、线、面、体之间的关系。

五、作业

1、“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理。”说说你对上述这段叙述的理解和体会。

2、阅读教科书第119页的实验与探究,并思考有关问题。

人教版七年级上册数学教案 11

通过上节课学习后,学生已经掌握了用去括号、移项、合并同类项、把系数化为1这四个步骤解一元一次方程,接下来这一节课,我们要重点讨论是:

(1)解方程中的“去分母”。

(2)根据实际问题列方程。这样我们就掌握了解一元一次方程一般都采用的五步变形方法。

由一道的求未知数的问题,得到方程,这个方程的特点就是有些系数是分数,这时学生纷纷用合并同类项,把系数化为1的变形方法来解,但在合并同类项时几个分数的求和,有相当一部分学生会感到困难且容易出错,再看方程怎样解呢?学生困惑了,不知从何处下手了,此时,需要寻求一种新的变形方法来解它,求知的欲 望出来了,想到了去分母,就是化去分母,把分数系数化为整数,使解方程中的计算方便些。

在解方程中去分母时,我们发现存在这样的一些问题:

(1)部分学生不会找各分母的最小公倍数,这点要适当指导。

(2)用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项。

(3)当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易错符号。如解方程方程两边都乘以2后,得到2x-x+2=2,其中x+2没有加括号,弄错了符号。

七年级数学上册教案 12

教学目标:

1、知道有理数加法的意义和法则

2、会用有理数加法法则正确地进行有理数的加法运算

3、经历有理数加法法则的探究过程,体会分类和归纳的数学思想方法

教学重点:

有理数加法则的探索及运用

教学难点:

异号两数相加的法则的理解及运用

教学过程:

一、创设情境

展示足球赛图片,你知道足球赛中“净胜球”是怎么回事吗?

(学生口答,教师介绍净胜球的算法:只要把各场比赛的结果相加就可以得到,由此揭示课题。)

二、探求新知

1、甲、乙两队进行足球比赛,

(1)如果上半场赢了3球,下半场又赢了2球,那么全场累计净胜几球?

(2)如果上半场赢了3球,下半场输了2球,那么全场累计净胜几球?

足球比赛中赢球个数与输球个数是一对相反意义的量。若规定赢球为正,输球为负,例如赢3球记为“+3”,输2球记为“-2”,你能把上述结果用加法算式表示出来吗?

(学生根据生活经验得到两种情况下的净胜球数,从而列出算式:(+3)+(+2)= +5;(+3)+(-2)= +1,教师板书。)

(3)、除了上面所说的“赢了再赢”,“先赢后输”,你还能说出其它可能的几种情况并用加算式表示吗?

(引导学生联系生活实际思考输赢球其它可能的情况,尽可能完整地说出所有的可能,由此感受两个有理数相加的各种情况,让学生自由发言,相互补充,教师板书算式:(-3)+(+2)= -1,(-3)+(-2)= -5,(-3)+0= -3,0+(+2)=+2,教师还可根据学生回答情况补充:上半场赢了3球,下半场输了3球;上半场打平,下半场也打平,最后的净胜球情况,由学生说出结果并列出算式:(+3)+(-3)= 0,0+0=0 )

2、你能举出一些运用有理数加法的实际例子吗?

(学生列举实例并根据具体意义写出算式)

3、学生活动:

(1)把笔尖放在数轴原点处,先向正方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?

(2)把笔尖放在数轴原点个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?

(3)你还能再做一些类似的活动,并写出相应的算式吗?

(教师示范活动(1)的操作过程,学生列出算式并完成(2)(3),得到一组算式,教师板书。这一活动目的`是让学生从“形”的角度,直观感受有理数的加法法则。)

4、归纳法则:

观察上述算式,和小学学过的加法运算有什么区别?你能归纳出有理数的加法法则吗?

(由前面所学的内容学生已经知道:有理数由符号和绝对值两部分组成,所以两个有理数的相加时,确定和时也需要分别确定和的符号和绝对值,教师可引导学生对照情境中输赢球的情况分别探索和的符号和绝对值如何确定,学生相互交流,自由发言,不断完善。通过探索有理数加法法则的过程,学生体会分类和归纳的数学思想方法。)

三、课堂小结:

学生回顾本节课所学内容,谈谈自己对有理数加法法则的理解及如何进行有理数加法运算。

四、布置作业:

1、课本p41第1题

2、列举一些生活中运用有理数加法的实际例子,并相互交流。

人教版七年级上册数学教案 13

知识目标

使学会解比例的方法,进一步理解和掌握比例的基本性质。

能力目标

联系的生活实际创设情境,体现解比例在生产生活中的广泛应用。

情感目标

利用所学知识解决生活中的问题,进一步培养综合运用知识的能力及情度、价值观的发展。

重点

使学会解比例的方法,进一步理解和掌握比例的基本性质。

难点

体现解比例在生产生活中的广泛应用。

教学过程

教学预设个性修改

目标导学,复习激趣,自主合作,汇报交流,变式训练

创境激疑一、旧知铺垫

1、什么叫做比例?

2、什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?

3、比例有几种表示形式?

合作探究二、探索新知

1、出示埃菲尔铁挂图

2、出示例题

(1)、读题。

(2)、从这道题里,你们获得了哪些信息?

(3)、在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)

(4)、这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)

(5)、还有一个条件是什么?(埃菲尔铁塔的高是320米)

(6)、我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)

(7)、这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。

(8)、根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书x:320=1:10)

(9)、这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?

(10)、不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)

(11)、指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做?(指名板演)

(12)、为什么可以写成这样的等式呢?10x=320×1(根据比例的基本性质)

(13)、对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)

(14)、这样含有未知数的等式,叫做方程。那么求出方程中的`未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。

(15)、我们解出的答案对不对呢?怎么知道?可以怎样检验?(把结果代入题目中看看对应的比的比值是不是能成比例。)

(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。

2、教学例3

过渡:我们知道比例还有另一种表示形式,当是=这样形式的时候,又该怎么解呢?

(1)、出示例3,问:这题与刚刚那个比例有哪些不同?

(2)、解这种比例时,要注意些什么呢?(找出比例的外项、内项)

(3)、在这个比例里,哪些是外项?哪些是内项?

(4)、解答(提问:你们是怎么解答的?)、检验。

拓展应用在一个比例中,两个外项的乘积正好互为倒数,已知一个内向是3,另一个内项是多少?

总结这节课主要学习了什么内容?

作业布置教材43页5题。

人教版七年级上册数学教案 14

教学目标

知识与能力目标:

1、巩固理解有理数的概念;

2、掌握数轴的意义及构成特点,明确其在实际中的应用;

3、会用数轴上的点表示有理数。

情感态度价值观目标:通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

教学重难点

教学重点:数轴的意义及作用。

教学难点:数轴上的点与有理数的直观对应关系。

课前准备

《数学》人教版七年级上册,自制课件。

教学过程

一、探索新知(投影展示)

问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。

学生结合上述问题分组讨论,明确以下问题:

1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?

2、举例说明生活中类似的事例;

3、什么叫数轴?它有哪几个要素组成?

4、数轴的。用处是什么?

5、你会画数轴吗并应用它吗?“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;结论:正数、0和负数可以用一条直线上的点表示出来。

3、展示温度计图形,比较其与图1、2-1的共同点和不同点:

共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;

不同点:温度计是竖直的,方向感不直观。

4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)

(1)数轴的构成三要素:原点、方向、单位长度;

(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;

5、归纳

(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。

(2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。

二、例题分析

例1.先画出数轴,然后在数轴上表示下列各数:-1、5,0,-2,2,-10/3。

例2、数轴上与原点距离4个长度单位的点表示的数是。

三、巩固训练

课本p10练习

自我检测

(1)数轴的三要素是;

(2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位;

(3)数轴上表示5与-2的两点之间距离是单位长度,有个点;

(4)如图,a、b为有理数,则a0,b0,ab

课堂小结

(1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。

(2)数轴的三要素:原点、正方向、单位长度。

(3)数学思想:数形结合的思想。

五、作业

1、课本14页习题1、2。

2、完成“自我检测”。

3、个性补充。

⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。

⑵画一条数轴,并表示出如下各点:1000,5000,-20__。

⑶在数轴上标出到原点的距离小于3的整数。

⑷在数轴上标出-5和+5之间的所有整数。

人教版七年级上数学教案 15

我们七年级数学备课组认真做好各项工作,现根据学校和上级有关部门工作计划,特制定本学期的备课组工作计划如下:

一。指导思想:

基于学习任务及小组合作学习的课堂,落实新课改,体现新理念,培养学生自主学习。以“面向全体学生,共同提高教学质量”为指导思想,同时在教学中渗透情感教育。树立本组团队合作意识。加强教学常规建设和课题研究,积极开展校本研究,进一步提高我们组数学整体的教学水平。

二。工作要点

1.切实加强教学常规管理,积极开展小组合作学习的课堂,提高课堂教学效率。

2.认真开展集体备课和课题研究活动,加强备课组团队合作意识,充分发挥学科骨干教师的示范作用。

3.深化数学教学研究,提升数学教师科研素养,积极撰写教学论文。

4.立足课堂,在有效教学策略上深入实践与研究。

三。具体措施

1.加强理论学习,提升教师素质。

进一步认真学习《课程标准》,领会教材编写意图的特点,认真分析教学内容,目标,重难点,严格执行新课程标准的指导思想,提出具体可行的教学方法,继续开展教科研活动,积极参与校本课程的研发工作,提高教科研能力。

2.加大课堂教学改革力度,做到“有效教学”。

探索适合学生实践的教学方式,把“基于学习任务及小组合作学习的课堂,”的教学模式作为本学期课堂教学研究,实现课堂教学理念的更新,做到课堂教学的有效性。

3.加强备课组教研活动,强化教研功能。

由备课组长负责继续实行集体备课制,备出优质课,特色课,全力打造实用课,共同探索新的教学模式,同事注重发挥每位教师各自的教学特色。

4.加强质量监测,及时反馈,提高教学质量。

认真完成各单元的练习卷,检测卷,由专人负责,他人审核,严把质量关。在平时教学中,及时反馈教学情况,认真分析原因,并及时调查和整改措施,努力提高教学质量。

人教版七年级上册数学优秀教案 16

教学目标

1.知识与技能

①理解有理数的意义。②能把给出的有理数按要求分类。③了解0在有理数分类的作用。

2.过程与方法

经历本节的。学习,培养学生树立分类讨论的观点和能正确地进行分类的能力。

3.情感、态度与价值观

通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育。

教学重点难点

重点:会把所给的各数填入它所在的数集的图里。难点:掌握有理数的两种分类。

教与学互动设计

(一)创设情境,导入新课

讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数。大家讨论一下,到目前为止,你已经认识了哪些类型的数。

(二)合作交流,解读探究

学生列举:3,5.7,-7,-9,-10,0,-3,-7.4,5.2…

议一议你能说说这些数的特点吗?

学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数。

说明:我们把所有的这些数�

人教版七年级上册数学教案 17

学习目标:

1、掌握正数和负数概念;

2、会区分两种不同意义的量,会用符号表示正数和负数;

3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

重点难点:

正数和负数概念

教学过程:

一、知识链接:

1、小学里学过哪些数请写出来:

2、阅读课本P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:

3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?

二、自主学习

1、正数与负数的产生

(1)生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。请你也举一个具有相反意义量的例子。

(2)负数的产生同样是生活和生产的需要。

2、正数和负数的表示方法

(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“-”(读作负)号来表示,如上面的-3、-8、-47。

(2)活动:两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示。

(3)阅读P2的内容。

3、正数、负数的。概念

1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

课堂练习:

1.P3第1,2题(直接做在课本上)。

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

3.已知下列各数:13,2,3.14,+3065,0,-239;54,则正数有______________;负数有____________________。

4.下列结论中正确的是()

A.0既是正数,又是负数

B.0是最大的负数

要点归纳:

正数、负数的概念:

(1)大于0的数叫做,小于0的数叫做。

(2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

拓展训练:

1.零下15℃,表示为_________,比0℃低4℃的温度是_________。

2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地。

3.“甲比乙大-3岁”表示的意义是_________________。

4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。课后作业:P5第1、2题。