首页 > 教学教案 > 初中教案 > 初一教案 > 七年级数学《有理数的减法》教案精选24篇正文

《七年级数学《有理数的减法》教案精选24篇》

时间:

在教学工作者开展教学活动前,时常会需要准备好教案,教案是保证教学取得成功、提高教学质量的基本条件。那么应当如何写教案呢?

随堂练习 1

1.填空题

(1)3-(-3)=____________; (2)(-11)-2=______________;

(3)0-(-6)=____________; (4)(-7)-(+8)=____________;

(5)-12-(-5)=____________; (6)3比5大____________;

(7)-8比-2小___________; (8)-4-( )=10;

(9)如果,,则的符号是___________;

(10)用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米__________.

2.判断题

(1)两数相减,差一定小于被减数.( )

(2)(-2)-(+3)=2+(-3).( )

(3)零减去一个数等于这个数的相反数.( )

(4)方程在有理数范围内无解.( )

(5)若,,,.( )

教学目标 2

1.理解掌握法则,会将运算转化为加法运算;

2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过运算,培养学生的运算能力.

3.通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

七年级数学《有理数的减法》教案 3

学习目标:

1、理解加减法统一成加法运算的意义。

2、会将有理数的加减混合运算转化为有理数的加法运算。

3、培养学习数学的兴趣,增强学习数学的信心。

学习重点、难点:有理数加减法统一成加法运算

教学方法:讲练相结合

教学过程

一、学前准备

1、一架飞机作特技表演,起飞后的高度变化如下表:

高度的变化上升4.5千米下降3.2千米上升1.1千米下降1.4千米

记作+4.5千米—3.2千米+1.1千米—1.4千米

请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了千米。

2、你是怎么算出来的,方法是

二、探究新知

1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧!

2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导。

3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为 。再把加号记在脑子里,省略不写

如:(-20)+(+3)-(-5)-(+7)有加法也有减法

=(-20)+(+3)+(+5)+(-7)先把减法转化为加法

=-20+3+5-7再把加号记在脑子里,省略不写

可以读作:“负20、正3、正5、负7的”或者“负20加3加5减7”。

4、师生完整写出解题过程

三、解决问题

1、解决引例中的问题,再比较前面的方法,你的感觉是

2、例题:计算-4.4-(-4)-(+2)+(-2)+12.4

3、练习:计算1)(—7)—(+5)+(—4)—(—10)

四、巩固

1、小结:说说这节课的收获

2、P241、2

3、计算

1)27—18+(—7)—322)

五、作业

1、P2552、P26第8题、14题

七年级数学《有理数的减法》教案 4

教学目标

1.理解掌握法则,会将运算转化为加法运算;

2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过运算,培养学生的运算能力.

3.通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

教学建议

(一)重点、难点分析

本节重点是运用法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值.理解法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施.

(二)知识结构

(三)教法建议

1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.

3、因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆.

4、注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。

教学设计示例

一、素质教育目标

(一)知识教学点

1.理解掌握法则.

2.会进行运算.

(二)能力训练点

1.通过把减法运算转化为加法运算,向学生渗透转化思想.

2.通过有理数减法法则的'推导,发展学生的逻辑思维能力.

3.通过运算,培养学生的运算能力.

(三)德育渗透点

通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

(四)美育渗透点

在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.

二、学法引导

1.教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.

2.学生学法:探索新知→归纳结论→练习巩固.

三、重点、难点、疑点及解决办法

1.重点:有理数减法法则和运算.

2.难点:有理数减法法则的推导.

四、课时安排

1课时

五、教具学具准备

电脑、投影仪、自制胶片.

六、师生互动活动设计

教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决.

七、教学步骤

(一)创设情境,引入新课

1.计算(口答)(1);(2)-3+(-7);

(3)-10+(+3);(4)+10+(-3).

2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的气温是10℃,夜晚的最低气温是-5℃.这一天的气温比最低气温高多少?

教师引导学生观察:

生:10℃比-5℃高15℃.

师:能不能列出算式计算呢?

生:10-(-5).

师:如何计算呢?

教师总结:这就是我们今天要学的内容.(引入新课,板书课题)

教法说明

1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础.2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—.

(二)探索新知,讲授新课

1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?

生:(+10)-(+3)=+7.

师:计算:(+10)+(-3)得多少呢?

生:(+10)+(-3)=+7.

师:让学生观察两式结果,由此得到

师:通过上述题,同学们观察减法是否可以转化为加法计算呢?

生:可以.

师:是如何转化的呢?

生:减去一个正数(+3),等于加上它的相反数(-3).

教法说明

教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算.

2.再看一题,计算(-10)-(-3).

教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.

教师给另外一个问题:计算(-10)+(+3).

生:(-10)+(+3)=-7.

教师引导、学生观察上述两题结果,由此得到:

教师进一步引导学生观察(2)式;你能得到什么结论呢?

生:减去一个负数(-3)等于加上它的相反数(+3).

教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.

教法说明

由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标.

师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?

学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.

师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书)

教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:.

教法说明

结合引入新课中温度计的实例,进一步验证了法则的合理性,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.

4.例题讲解:

[出示投影1(例题1、2)]

例1计算(1)(-3)-(-5);(2)0-7;

例2计算(1)7.2-(-4.8);(2)()-.

例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算.

例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评.

教法说明

学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.

师:组织学生自己编题,学生回答.

教法说明

教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授.

(三)尝试反馈,巩固练习

师:下面大家一起看一组题.

[出示投影2(计算题1、2)]

1.计算(口答)

(1)6-9;(2)(+4)-(-7);(3)(-5)-(-8);

(4)(-4)-9(5)0-(-5);(6)0-5.

2.计算

(1)(-2.5)-5.9;(2)1.9-(-0.6);

(3)()-;(4)-().

学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上.

教法说明

学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备.

用实物投影显示课本第45页的画面.

3.世界峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少?

生答:8848-(-392)=8848+392=9240.

所以两地高度相差9240米.

教法说明

此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际.

(四)课堂小结

提问:通过本节课学习你学到了什么?生答:略.

师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算.对于小学不能解决的2-5这类不够减的问题就不成问题了.也就是说,在有理数范围内,减法总可能实施.

八、随堂练习

1.填空题

(1)3-(-3)=____________;(2)(-11)-2=______________;

(3)0-(-6)=____________;(4)(-7)-(+8)=____________;

(5)-12-(-5)=____________;(6)3比5大____________;

(7)-8比-2小___________;(8)-4-()=10;

(9)如果,,则的符号是___________;

(10)用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米__________.

2.判断题

(1)两数相减,差一定小于被减数.()

(2)(-2)-(+3)=2+(-3).()

(3)零减去一个数等于这个数的相反数.()

(4)方程在有理数范围内无解.()

(5)若,,,.()

九、布置作业

(一)必做题:课本第83页中2.偶数题,3.偶数题,4.偶数题.

(二)选做题:课本第84页中5、8.

十、板书设计

随堂练习答案.

1.(1)6;(2)-13;(3)6;(4)-15;

(5)-7;(6)-2;(7)6;(8)-4;

(9)+;(10)8848-(-155).

2.××√×√

作业答案

(一)必做题:2.(2)102;(4)-68;(6)-210;(8)92

3.(2)-0.6;(4)0.2;(6)-1.5;(8)9.11

(二)选做题:5.(1)-9;(2)-5;(3)1;(4)12;(5)-2.28;(6)

8.(1)4;(2)5;(3)7;(4)5

数学有理数的减法优秀教案 5

教学目标

1.了解有理数加法的意义,理解有理数加法法则的合理性;

2.能运用有理数加法法则,正确进行有理数加法运算;

3.经历探索有理数加法法则的过程,感受数学学习的方法;

4.通过积极参与探究性的数学活动,体验数学来源于实践并为实践服务的思想,激发学生的学习兴趣,同时培养学生探究性学习的能力。

教学重点

能运用有理数加法法则,正确进行有理数加法运算。

教学难点

经历探索有理数加法法则的过程,感受数学学习的方法。

教学过程(教师)

一、创设情境

小学里,我们学过加法和减法运算,引进负数后,怎样进行有理数的加法和减法运算呢?

1.试一试

甲、乙两队进行足球比赛。如果甲队在主场赢了3球,在客场输了2球,那么两场比赛后甲队净胜1球。

你能把上面比赛的过程及结果用有理数的算式表示出来吗?

做一做:比赛中胜负难料,两场比赛的结果还可能有哪些情况呢?动动手填表:

2.我们知道,求两次输赢的总结果,可以用加法来解答,请同学们先个人研究,后小组交流。

你还能举出一些应用有理数加法的实际例子吗?

二、探究归纳

1.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,这时笔尖停在“”的位置上。

用数轴和算式可以将以上过程及结果分别表示为:

算式:________________________

2.把笔尖放在数轴的原点,沿数轴先向右移动3个单位长度,再向左移动2个单位长度,这时笔尖停在“1”的位置上。

用数轴和算式可以将以上过程及结果分别表示为:

算式:________________________

3.把笔尖放在数轴的原点,沿数轴先向左移动3个单位长度,再向左移动2个单位长度,这时笔尖的位置表示什么数?

请用数轴和算式分别表示以上过程及结果:

算式:________________________

仿照上面的做法,请在数轴上呈现下面的算式所表示的笔尖运动的过程和结果。

4.观察、思考、讨论、交流并得出有理数加法法则。

讨论:两个有理数相加时,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?

《2.5有理数的加法与减法》课时练习

1.七年级(3)班同学李亮在一次班级运动会上参加三级跳远比赛,共跳了5次,他第一次跳了6m,第二次比第一次多跳0.1m,第三次比第二次少跳0.3m,第四次比第三次多跳0.5m,第五次比第四次少跳了0.4m.他那一次跳得最远?成绩是多少?

2.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.

(1)通过计算说明小虫是否回到起点P.

(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间。

2.5有理数的加法与减法:同步练习

1.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向 多项式除以单项式,其基本方法与步骤是化归为单项式除以单项式,结果仍是多项式,其项数与原多项式的项数相同。因此多项式除以单项式的运算关键是将它转化为单项式除法的运算,再准确应用相关的运算法则。

难点是理解法则导出的根据。根据除法是乘法的逆运算可知,多项式除以单项式的运算法则的实质是把多项式除以单项式的的运算转化为单项式的除法运算。由于,故多项式除以单项式的法则也可以看做是乘法对加法的分配律的应用。

教法建议

(1)多项式除以单项式运算的实质是把多项式除以单项式的运算转化为单项式的除法运算,因此建议在学习本课知识之前对单项式的除法运算进行复习巩固。

(2)多项式除以单项式所得商的项数与这个多项式的项数相同,不要漏项。

(3)要熟练地进行多项式除以单项式的运算,必须掌握它的基本运算,幂的运算性质是整式乘除法的基础,只要抓住这关键的一步,才能准确地进行多项式除以单项式的运算。

(4)符号仍是运算中的重要问题,用多项式的`每一项除以单项式时,要注意每一项的符号和单项式的符号。

教学设计示例

教学目标:

1.理解和掌握多项式除以单项式的运算法则。

2.运用多项式除以单项式的法则,熟练、准确地进行计算.

3.通过总结法则,培养学生的抽象概括能力.训练学生的综合解题能力和计算能力.

4.培养学生耐心细致、严谨的数学思维品质.

重点、难点:

1.多项式除以单项式的法则及其应用.

2.理解法则导出的根据。

课时安排:

一课时.

教具学具:

投影仪、胶片.

教学过程:

1.复习导入

(l)用式子表示乘法分配律.

(2)单项式除以单项式法则是什么?

(3)计算:

(4)填空:

规律:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

2.讲授新课

例1计算:

解:(1)原式

(2)原式

注意:(l)多项式除以单项式,商式与被除式的项数相同,不可丢项,如(l)中容易丢掉最后一项.

(2)要求学生说出式子每步变形的依据.

(3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.

例2化简:

解:原式

说明:注意弄清题中运算顺序,正确运用有关法则、公式。

(1)P150 1,2,。

(2)错例辩析:

有两个错误:第一,丢项,被除式有三项,商式只有二项,丢了最后一项1;第二项是符号上错误,商式第一项的符号为“-”,正确答案为。

3.小结

1.多项式除以单项式的法则是什么?

2.运用该法则应注意什么?

正确地把多项式除以单项式问题转化为单项式除以单项式问题。计算不可丢项,分清“约掉”与“消掉”的区别:“约掉”对乘除法则言,不减项;“消掉”对加减法而言,减项。

4.作业

P152 A组1,2。

B组1,2。

教具学具准备 6

电脑、投影仪、自制胶片.

数学有理数的减法优秀教案 7

教学目标

1. 会把有理数的加减法混合运算统

教学重点

把有理数的加减法混合运算统

教学难点

省略负数前面的加号的有理数加法,运用运算律交换加数位置时,符号不变。

教学过程

根据有理数的减法法则,有理数的加减速混合运算可以统

1.完成下列计算:

(1) 3+7-12; (2)(-8)-(-10)+(-6)-(+4)。

归纳: 根据有理数的减法法则,有理数的加减混合运算可以统一为 运算;

(2)式统一成加法是________________________________;

省略负数前面的加号和( )后的形式是______________________;

读作____________________ 或 _______________________。

展示交流

1.把下列运算统一成加法运算:

(1)(-12)+(-5)-(-8)-(+9)=_____________________________;

(2)(-9)-(+5)-(-15)-(+9)=_____________________________;

(3) 2+5-8=_________________________________;

(4) 14-(-12)+(-25)-17=_____________________________________。

2. 将下列有理数加法运算中,加号省略:

(1)12+(-8)=________________;

(2)(-12)+(-8)=_________________________________;

(3)(-9)+(-5)+(+15)+(-20)= ____________________________。

3.将下列运算先统一成加法,再省略加号:

(-15)-(+63)-(-35)-(+24)+(-12)=_________________________

=_________________________。

4. 仿照本P37例6,完成下列计算:

(1) -4-5+6 ; (2) -23+41-24+12-46。

5. 仿照本P38例7,巡道员沿东西方向的铁路巡视维护,从住地出发,他先向东巡视了6km,休息之后,继续向东维护了4km;然后折返向西巡视了12.5 km,此时他在住地的什么方向?与驻地的距离是多少?

盘点收获

个案补充

课堂反馈

1.计算:

2.早晨6:00的气温为 ℃,到中午2:00气温上升了8℃,到晚上10:00气温又下降了9℃.晚上10:00的气温是多少?

迁移创新

一架飞机做特技表演,它起飞后的高度变化情况为:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此时飞机比起飞点高了多少千米?

课堂作业

本P39 习题2 .5第6题(1)、 (3)、(5), 第7题。

学法引导 8

1、教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.

2.学生学法:探索新知→归纳结论→练习巩固.

师生互动活动设计 9

教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决.

重点、难点、疑点及解决办法 10

1.重点:有理数减法法则和运算.

2.难点:有理数减法法则的推导.

教学建议 11

(一) 重点、难点分析

本节重点是运用法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值.理解法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施.

(二)知识结构

(三)教法建议

1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.

3、 因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆.

4、注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。

数学有理数的减法优秀教案 12

一、教学目标

㈠知识与技能

1.理解掌握有理数的减法法则。

2.会进行有理数的减法运算。

㈡过程与方法

1.通过把减法运算转化为加法运算,向学生渗透转化思想。

2.通过有理数减法法则的推导,发展学生的逻辑思维能力。

3.通过有理数的减法运算,培养学生的运算能力。

㈢情感态度与价值感

通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辨证唯物主义思想。

二、学法引导

1.教学方法:尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。

2.学生学法:探索新知归纳结论练习巩固

三、重、难点与关键

1.重点:有理数减法法则和运算

2.难点:有理数减法法则的推导

3.关键:正确完成减法到加法的转化

四、师生互动活动设计

教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。

五、教学过程

㈠创设情境,引入新课

1、计算(口答)

⑴;⑵-3+(-7)

⑶-10+3;⑷10+(-3)

2、由实物投影显示课本第21页中的画面,假设这是淮南冬季里的某个周六,白天的最高气温是3℃,夜晚的最低气温是-3℃,这一天的最高气温比最低气温高多少?

引导学生观察:

生:3℃比-3℃高6℃

师:能不能列出算式计算呢?

生:3-(-3)

师:如何计算呢?

总结:这就是我们今天要学的内容。(引入新课,板书课题)

㈡探索新知,讲授新课

1、师:大家知道减法是与加法相反的运算,计算3-(-3),就是要求出一个数χ,使χ与-3的和等于3,那什么数与-3的和等于3呢?

生:6+(-3)=3

师:很好!由此可知3-(-3)=6

师:计算:3+(+3)得多少呢?

生:3+(+3)=6

师:让学生观察两式结果,由此得到

3-(-3)=3+(+3)

师:通过上述题,同学们观察减法是否可以转化为加法计算呢?

生:可以

师:是如何转化的呢?

生:减去一个负数(-3),等于加上它的相反数(+3)

2、换几个数再试一试,计算下列各式:

⑴0-(-3)=0+(+3)=

⑵-5-(-3)=-5+(+3)=

⑶9-8=9+(-8)=

引导学生完成答题,并提问:通过上述的讨论,你能得出什么结论?

归纳得出:有理数的减法可以转化为加法来进行,“相反数“是转化的桥梁。

(投影显示或板书)有理数减法法则:

减去一个数,等于加上这个数的相反数。

用式子表示为:a-b=a+(-b)

强调注意:减法在运算时有2个要素发生了变化

1、减加

2、数相反数

3、例题讲解:(出示投影)

例1、计算下列各题

⑴9-(-5)⑵(-3)-1

七年级数学《有理数的减法》教案 13

一、课题§2.5有理数的减法

二、教学目标

1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;

2.培养学生观察、分析、归纳及运算能力.

三、教学重点和难点

有理数减法法则

四、教学手段

现代课堂教学手段

五、教学方法

启发式教学

1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;

2.培养学生观察、分析、归纳及运算能力。

有理数减法法则。

有理数的减法转化为加法时符号的改变。

电脑、投影仪

习题:

一、从学生原有认知结构提出问题

1.计算:(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.

2.化简下列各式符号:(1)-(-6);(2)-(+8);(3)+(-7);(4)+(+4);(5)-(-9);(6)-(+3).

3.填空:(1)____+6=20; (2)20+____=17;(3)____+(-2)=-20; (4)(-20)+___=-6.

二、师生共同研究有理 数减法法则

问题1 (1)4-(-3)=______ ;

(2)4+(+3)=______.

教师引导学生发现:两式的结果相同,即4-(-3)= 4+(+3).

思考:减法可以转化成加法运算.但是,这是否具有一般性?

问题2 (1)(+10)-(-3)=______ ;(2)(+10)+(+3)=______.

对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?

(2)的结果是多少?于是,(+10)-(-3)=(+10)+(+3).

归纳出有理数减法法则:减去一个数,等于加上这个数的相反数.

强调运用时注意“两变”:一是减法变为加法;二是减数变为其相反数.

三、运用举例 变式练习

例1 计算:(1)9 -(-5); (2)0-8.(3)(-3)-1;(4)(-5)-0(5)(-3)-[6-(-2)];(6)15-(6-9)

例2 世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8848米,吐鲁番盆地的海拔高度大约是-155米。两处高度相差多少米?

例3 P63例3

例4 15℃比5℃高多少? 15℃比-5℃高多少?

练一练: P63. 1题 P64-65数学理解1、问题解决1、联系拓广1、2题。

补充:1.计算:(1)-8-8; (2)(-8)-(-8);(3)8-(-8);(4)8-8;

(5)0-6; (6)6-0; (7)0-(-6); (8)(-6)-0.

2.计算:(1)16-47; (2)28-(-74); (3)(-37)-(-85); (4)(-54)-14;

(5)123-190; (6)(-112)-98; (7)(-131)-(-129); (8)341-249.

3.计算:(1)(3-10)-2; (2)3-(10-2); (3)(2-7)-(3-9);

4.当a=11,b=-5,c=-3时,求下列代数式的值:

(1)a-c; (2) b-c; (3)a-b-c ; (4)c-a-b.

四、反思小结

1.由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决。

2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的。

习题2.6知识技能1、3、4题。

本节课内容较为简单,学生掌握良好,课上反应热烈。

《有理数的减法》教案 14

教学目标

1.理解掌握法则,会将运算转化为加法运算;

2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过运算,培养学生的运算能力。

3.通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

教学建议

(一) 重点、难点分析

本节重点是运用法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值。理解法则是难点,突破的关键是转化,变减为加。学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施。

(二)知识结构

(三)教法建议

1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。

2.不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。

3. 因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆。

4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。

教学设计示例

一、素质教育目标

(一)知识教学点

1.理解掌握法则。

2.会进行运算。

(二)能力训练点

1.通过把减法运算转化为加法运算,向学生渗透转化思想。

2.通过有理数减法法则的推导,发展学生的逻辑思维能力。

3.通过运算,培养学生的运算能力。

(三)德育渗透点

通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

(四)美育渗透点

在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美。

二、学法引导

1.教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。

2.学生学法:探索新知→归纳结论→练习巩固。

三、重点、难点、疑点及解决办法

1.重点:有理数减法法则和运算。

2.难点:有理数减法法则的推导。

四、课时安排

1课时

五、教具学具准备

电脑、投影仪、自制胶片。

六、师生互动活动设计

教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。

七、教学步骤

(一)创设情境,引入新课

1.计算(口答)(1); (2)-3+(-7);

(3)-10+(+3); (4)+10+(-3).

2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的气温是10℃,夜晚的最低气温是-5℃.这一天的气温比最低气温高多少?

教师引导学生观察:

生:10℃比-5℃高15℃.

师:能不能列出算式计算呢?

生:10-(-5).

师:如何计算呢?

教师总结:这就是我们今天要学的内容。(引入新课,板书课题)

【教法说明】1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础。2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—.

(二)探索新知,讲授新课

1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?

生:(+10)-(+3)=+7.

师:计算:(+10)+(-3)得多少呢?

生:(+10)+(-3)=+7.

师:让学生观察两式结果,由此得到

(+10)-(+3)=+10)+(-3). (1)

师:通过上述题,同学们观察减法是否可以转化为加法计算呢?

生:可以。

师:是如何转化的呢?

生:减去一个正数(+3),等于加上它的相反数(-3).

【教法说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算。

2.再看一题,计算(-10)-(-3).

教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.

教师给另外一个问题:计算(-10)+(+3).

生:(-10)+(+3)=-7.

教师引导、学生观察上述两题结果,由此得到:

(-10)-(-3)=(-10)+(+3). (2)

教师进一步引导学生观察(2)式;你能得到什么结论呢?

生:减去一个负数(-3)等于加上它的相反数(+3).

教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算。

【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标。

师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?

学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充。

师:出示有理数减法法则:减去一个数,等于加上这个数的相反数。(板书)

教师强调法则:(1)减法转化为加法,减数要变成相反数。(2)法则适用于任何两有理数相减。(3)用字母表示一般形式为:.

【教法说明】结合引入新课中温度计的实例,进一步验证了法则的合理性,同时向学生指出了有理数减法的实际意义。从而使学生体会到数学来源于实际,又服务于实际。

4.例题讲解:

[出示投影1 (例题1、2)]

例1 计算(1)(-3)-(-5); (2)0-7;

例2 计算(1)7.2-(-4.8); (2)-.

例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算。

例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评。

【教法说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯。例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视。例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数。

师:组织学生自己编题,学生回答。

【教法说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识。这样做,一方面可以活跃学生的思维,培养学生的表达能力。另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识。同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授。

(三)尝试反馈,巩固练习

师:下面大家一起看一组题。

[出示投影2 (计算题1、2)]

1.计算(口答)

(1)6-9; (2)(+4)-(-7); (3)(-5)-(-8);

(4)(-4)-9 (5)0-(-5); (6)0-5.

2.计算

(1)(-2.5)-5.9; (2)1.9-(-0.6);

(3)-; (4)-.

学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上。

【教法说明】学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备。

用实物投影显示课本第45页的画面。

3.世界峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少?

生答:8848-(-392)=8848+392=9240.

所以两地高度相差9240米。

【教法说明】此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际。

(四)课堂小结

提问:通过本节课学习你学到了什么?生答:略。

师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算。对于小学不能解决的2-5这类不够减的问题就不成问题了。也就是说,在有理数范围内,减法总可能实施。

八、随堂练习

1.填空题

(1)3-(-3)=____________; (2)(-11)-2=______________;

(3)0-(-6)=____________; (4)(-7)-(+8)=____________;

(5)-12-(-5)=____________; (6)3比5大____________;

(7)-8比-2小___________; (8)-4-( )=10;

(9)如果,,则的符号是___________;

(10)用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米__________.

2.判断题

(1)两数相减,差一定小于被减数。( )

(2)(-2)-(+3)=2+(-3).( )

(3)零减去一个数等于这个数的相反数。( )

(4)方程在有理数范围内无解。( )

(5)若,,,.( )

九、布置作业

(一)必做题:课本第83页中2.偶数题,3.偶数题,4.偶数题。

(二)选做题:课本第84页中5、8.

十、板书设计

随堂练习答案。

1.(1)6; (2)-13; (3)6; (4)-15;

(5)-7; (6)-2; (7)6; (8)-4;

(9)+; (10)8848-(-155).

2.× × √ × √

作业 答案

(一)必做题:2.(2)102;(4)-68;(6)-210;(8)92

3.(2)-0.6;(4)0.2;(6)-1.5;(8)9.11

4.(2);(4);(6);(8)

(二)选做题:5.(1)-9;(2)-5;(3)1;(4)12;(5)-2.28;(6)

8.(1)4;(2)5;(3)7;(4)5

板书设计 15

随堂练习答案.

1.(1)6; (2)-13; (3)6; (4)-15;

(5)-7; (6)-2; (7)6; (8)-4;

(9)+; (10)8848-(-155).

2.× × √ × √

作业 答案

(一)必做题:2.(2)102;(4)-68;(6)-210;(8)92

3.(2)-0.6;(4)0.2;(6)-1.5;(8)9.11

4.(2);(4);(6);(8)

(二)选做题:5.(1)-9;(2)-5;(3)1;(4)12;(5)-2.28;(6)

8.(1)4;(2)5;(3)7;(4)5

数学有理数的减法优秀教案 16

教学目标:

1、经历探索有理数减法法则的过程。

2、理解并初步掌握有理数减法法则,会做有理数减法运算。

3、能根据具体问题,培养抽象概括能力和口头表达能力。

教学重点运用有理数减法法则做有理数减法运算。

教学难点有理数减法法则的得出。

教具学具多媒体、教材、计算器

教学方法研讨法、讲练结合

教学过程一、引入新课:

师:下面列出的是连续四周的最高和最低气温:

第1周第二周第三周第四周

最高气温+6℃0℃+4℃-2℃

最低气温+2℃-5℃-2℃-5℃

周温差

求每周的温差时,应运用哪一种运算?�

生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。

列式为;

(+6)-(+2)=4

0-(-5)=5

(+4)-(-2)=6

(-2)-(-5)=3

教学过程二、有理数减法法则的推倒:

师:1、根据上面的计算和计算结果,让我们以求四周的温差为例子研究一下,是否可以用加法的知识类做减法的运算。

2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么?

3、自己设计一些有理数的减法,用计算器检验一下你归纳的减法法则是否正确。

举例:(-5)+()=-2

得出(-5)+(+3)=-2

所以得到(-2)-(-5)=+3

而(-2)+(+5)=+3

有理数减法法则:减去一个数,等于加上这个数的相反数。

教学过程三、法则的应用:

例1:先做笔算,再用计数器检验。

(1)(-34)-(+56)-(-28);

(2)(+25)-(-293)-(+472)

教学过程

解:(1)原式=-34+(-56)+(+28)

=-90+(+28)

=-62

(2)原式=+25+(+293)+(-472)

=+25+(-836)

= 676

注意:强调计算过程不能跳步,体现有理数减法法则的运用。

检测题

教学过程四、练习反馈:

师:巡视个别指导,订正答案。

教学过程五、小结:

有理数减法法则:

减去一个数,等于加上这个数的相反数。

有理数减法法则:

减去一个数,等于加上

这个数的相反数。例1:先做笔算,再用计数器检验。

(1)(-34)-(+56)-(-28);

(2)(+25)-(-293)-(+472)

布置作业 17

(一)必做题:课本第83页中2.偶数题,3.偶数题,4.偶数题.

(二)选做题:课本第84页中5、8.

教学步骤 18

(一)创设情境,引入新课

1.计算(口答)(1); (2)-3+(-7);

(3)-10+(+3); (4)+10+(-3).

2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的'最高气温是10℃,夜晚的最低气温是-5℃.这一天的最高气温比最低气温高多少?

教师引导学生观察:

生:10℃比-5℃高15℃.

师:能不能列出算式计算呢?

生:10-(-5).

师:如何计算呢?

教师总结:这就是我们今天要学的内容.(引入新课,板书课题)

【教法说明】

1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础.

2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—.

(二)探索新知,讲授新课

1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?

生:(+10)-(+3)=+7.

师:计算:(+10)+(-3)得多少呢?

生:(+10)+(-3)=+7.

师:让学生观察两式结果,由此得到

(+10)-(+3)=+10)+(-3). (1)

师:通过上述题,同学们观察减法是否可以转化为加法计算呢?

生:可以.

师:是如何转化的呢?

生:减去一个正数(+3),等于加上它的相反数(-3).

【教法说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算.

2.再看一题,计算(-10)-(-3).

教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加加会得到-10,那么这个数是谁呢?

生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.

教师给另外一个问题:计算(-10)+(+3).

生:(-10)+(+3)=-7.

教师引导、学生观察上述两题结果,由此得到:

(-10)-(-3)=(-10)+(+3). (2)

教师进一步引导学生观察(2)式;你能得到什么结论呢?

生:减去一个负数(-3)等于加上它的相反数(+3).

教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.

【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标.

师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?

学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.

师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书)

教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:.

【教法说明】结合引入新课中温度计的实例,进一步验证了法则的合理性,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.

4.例题讲解:

[出示投影1 (例题1、2)]

例1  计算(1)(-3)-(-5); (2)0-7;

例2  计算(1)7.2-(-4.8); (2)()-.

例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算.

例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评.

【教法说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.

师:组织学生自己编题,学生回答.

【教法说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授.

(三)尝试反馈,巩固练习

师:下面大家一起看一组题.

[出示投影2 (计算题1、2)]

1.计算(口答)

(1)6-9; (2)(+4)-(-7); (3)(-5)-(-8);

(4)(-4)-9 (5)0-(-5); (6)0-5.

2.计算

(1)(-2.5)-5.9; (2)1.9-(-0.6);

(3)()-; (4)-().

学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上.

【教法说明】学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备.

用实物投影显示课本第45页的画面.

3.世界最高峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少?

生答:8848-(-392)=8848+392=9240.

所以两地高度相差9240米.

【教法说明】此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际.

(四)课堂小结

提问:通过本节课学习你学到了什么?生答:略.

师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算.对于小学不能解决的2-5这类不够减的问题就不成问题了.也就是说,在有理数范围内,减法总可能实施.

数学有理数的减法优秀教案 19

【教学目标】

1.会进行有理数加法运算。

2.认识有理数加法交换律与结合律的合理性,会用加法运算律简化运算。

3.会将有理数的减法运算转换成加法运算。

4.会进行加减混合运算。

此外,感受有理数加法法则的合理性以及“分类”的思想方法,感受有理数减法与加法的对立统一,体会“化归”的思想方法。

【教学过程设计建议(第一课时)】

1.情境创设

除课本提供的情境外,还可以用学生熟悉的生活实例,如用水位变化、存钱取钱等问题引进有理数加法。例如:

第1天水位上涨了3 cm,第2天上涨了2 cm,两天共上涨了多少?第1天水位上涨了3 cm,第2天下降了2 cm,两天共上涨了多少?第1天水位下降了3 cm,第2天下降了2 cm,两天共下降了多少?第1天水位上涨了3 cm,第2天不升也不降,两天共上涨了多少?

如果将上涨记为正,上涨“3 cm"可记为“3”,下降记为负,下降“2 cm"可记为“一2”,你能用含正、负数的算式表示水位的变化过程和结果吗?两天的水位还可能出现哪些变化?请用含正、负数的算式表示变化过程和变化结果。

2.探索活动

(1)需要特别注意的是,算式“( 3) (一2)= 1”

只是借助正、负号,记录计算净胜球的计算过程与结果,算式的左边是加法,而右边的“1”是根据生活经验得到的。

课本提供的情境是“先赢后输”、“累计为赢”的类型,在将其写成含正、负数的算式并根据生活经验得出结果后,可问学生:除“先赢后输”外,两场比赛的结果还会出现哪些情况?在学生列举出“赢了再赢”,“先输后赢”,“输了再输”,“先赢后平”,“先平后赢”及“平局”等情况后,再让学生填写净胜球计算表,感受两个有理数相加的各种情况,提高学生探求运算规律的积极性。

与小学不同的是,由于有理数由符号和绝对值两部分组成,所以运算时既要考虑符号也要考虑绝对值.例如,首先要确定两场比赛的输赢,这是符号问题,然后确定输赢球的个数,这是绝对值问题。

(2)设置“数学实验室”的目的是让学生从“形”上感受有理数的加法运算法则。采用人人都可以动手操作的笔尖在数轴上两次移动的方法,直观感受两次连续运动中,点的运动方向与移动的距离对实际移动效果产生的影响,通过“形与数”的转换,加深学生对有理数加法运算法则的理解。

3.例题教学

例1第(1)小题是求一个正数与一个负数的和;第(2)小题是求两个负数的和;第(3)小题是求两个互为相反数的和;第(4)小题是求0与一个有理数的和。为突出运算法则,4个题目都设计为简单的整数运算。

学生应能熟练进行有理数的加法运算,但运算难度要以《标准》要求为准。教师在补充例题、习题时不宜在数字运算上设置障碍,当学生熟练掌握运算法则后,随着知识的积累、技能的提高、数感的增强、计算器的引入,学生处理繁难运算的能力也会逐渐增强。

【教学过程设计建议(第二课时)】

1.探索活动

从复习有理数的加法运算开始,由问题“在含有负数的加法运算中,加法交换律和结合律还成立吗?”引发思考,让学生感受验证的必要性,主动投入验证活动。采用在几何图形中填数字的验证方法,直观性强且易于操作。通过心算、观察、比较及更改数字等活动,学生很容易认同加法“交换律”和“结合律”的合理性。这种验证方法也适用于乘法对于加法的分配律。

在认同加法“交换律”和“结合律”后,可让学生口述这两个运算律,然后再用字母来表述,从中体会用字母表示数的优越性。

此外,按课本中对扑克牌的约定,随意抽取扑克牌进行计算,也是验证有理数加法运算律的好办法。

2.例题教学

例2没有要求“用运算律进行计算”,只是通过卡通人的旁白告诉学生“这样算简便”,让学生感受有时可以用运算律简化运算,练习和作业时不宜强求学生要用运算律来运算。

【教学过程设计建议(第三课时)】

1.情境创设

小丽从观察温度计上的读数出发,借助生活经验得出了日温差;小明由减法的意义,利用加法“凑”出了日温差。教学时可让学生直接观察温度计,也可制作温度计的教学课件或利用数轴演示日温差。

2.探索活动

(1)用问题串引导学生展开探索活动,例如:

小丽从温度计上看到,从5℃降到一3℃,温差为8℃。� �

小明与小丽的结论相同,是偶然巧合吗?请举例说明。

(2)比较小明与小丽的算式,感受有理数减法运算转化为加法运算的转化过程:减号变为加号,减数变为它的相反数。

3.例题教学

例3、例4的教学中,要注重“减法转化为加法”的过程,引导学生加深对“减去一个数等于加上这个数的相反数”的认识.例4之后,课本指出有理数的加、减法运算可以统

设计课本上“练一练”的程序运算和习题第ll题的仿“幻方”问题,是为了吸引学生积极参与,用寓教于乐的方式提升学生的运算能力。可以在此基础上,让学生自行设计一些易于操作的有趣活动,进行有理数加、减混合运算的练习。

教学中,如有必要可适当补充加、减混合运算的例题、习题。

4.小结

除对有理数加、减法的运算法则进行小结外,还应向学生指出,由于有理数的减法运算可以转化为加法运算,所以,小学里无法解决的被减数比减数小的减法问题,现在就有了合理的解释。换言之,在有理数范围内减法运算总可以实施。但是,两个有理数相减,差不一定比被减数小,这就是引进负数后对运算带来的重大变化。

教学设计示例 20

一、素质教育目标

(一)知识教学点

1.理解掌握法则.

2.会进行运算.

(二)能力训练点

1.通过把减法运算转化为加法运算,向学生渗透转化思想.

2.通过有理数减法法则的推导,发展学生的逻辑思维能力.

3.通过运算,培养学生的运算能力.

(三)德育渗透点

通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

(四)美育渗透点

在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.

七年级数学《有理数的减法》教案 21

教学目标

1.理解掌握法则,会将运算转化为加法运算;

2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过运算,培养学生的运算能力.

3.通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

教学建议

(一)重点、难点分析

本节重点是运用法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值.理解法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施.

(二)知识结构

(三)教法建议

1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.

3.因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆.

4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。

教学设计示例

一、素质教育目标

(一)知识教学点

1.理解掌握法则.

2.会进行运算.

(二)能力训练点

1.通过把减法运算转化为加法运算,向学生渗透转化思想.

2.通过有理数减法法则的推导,发展学生的逻辑思维能力.

3.通过运算,培养学生的运算能力.

(三)德育渗透点

通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

(四)美育渗透点

在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.

二、学法引导

1.教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.

2.学生学法:探索新知→归纳结论→练习巩固.

三、重点、难点、疑点及解决办法

1.重点:有理数减法法则和运算.

2.难点:有理数减法法则的推导.

四、课时安排

1课时

五、教具学具准备

电脑、投影仪、自制胶片.

六、师生互动活动设计

教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决.

七、教学步骤

(一)创设情境,引入新课

1.计算(口答)(1);(2)-3+(-7);

(3)-10+(+3);(4)+10+(-3).

2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的气温是10℃,夜晚的最低气温是-5℃.这一天的气温比最低气温高多少?

教师引导学生观察:

生:10℃比-5℃高15℃.

师:能不能列出算式计算呢?

生:10-(-5).

师:如何计算呢?

教师总结:这就是我们今天要学的内容.(引入新课,板书课题)

【教法说明】1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础.2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—.

(二)探索新知,讲授新课

1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?

生:(+10)-(+3)=+7.

师:计算:(+10)+(-3)得多少呢?

生:(+10)+(-3)=+7.

师:让学生观察两式结果,由此得到

师:通过上述题,同学们观察减法是否可以转化为加法计算呢?

生:可以.

师:是如何转化的呢?

生:减去一个正数(+3),等于加上它的相反数(-3).

【教法说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算.

2.再看一题,计算(-10)-(-3).

教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.

教师给另外一个问题:计算(-10)+(+3).

生:(-10)+(+3)=-7.

教师引导、学生观察上述两题结果,由此得到:

教师进一步引导学生观察(2)式;你能得到什么结论呢?

生:减去一个负数(-3)等于加上它的相反数(+3).

教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.

【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的`思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标.

师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?

学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.

师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书)

教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:.

【教法说明】结合引入新课中温度计的实例,进一步验证了法则的合理性,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.

4.例题讲解:

[出示投影1 (例题1、2)]

例1计算(1)(-3)-(-5);(2)0-7;

例2计算(1)7.2-(-4.8);(2)()-.

例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算.

例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评.

【教法说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.

师:组织学生自己编题,学生回答.

【教法说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授.

(三)尝试反馈,巩固练习

师:下面大家一起看一组题.

[出示投影2 (计算题1、2)]

1.计算(口答)

(1)6-9;(2)(+4)-(-7);(3)(-5)-(-8);

(4)(-4)-9 (5)0-(-5);(6)0-5.

2.计算

(1)(-2.5)-5.9;(2)1.9-(-0.6);

(3)()-;(4)-().

学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上.

【教法说明】学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备.

用实物投影显示课本第45页的画面.

3.世界峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少?

生答:8848-(-392)=8848+392=9240.

所以两地高度相差9240米.

【教法说明】此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际.

(四)课堂小结

提问:通过本节课学习你学到了什么?生答:略.

师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算.对于小学不能解决的2-5这类不够减的问题就不成问题了.也就是说,在有理数范围内,减法总可能实施.

八、随堂练习

1.填空题

(1)3-(-3)=____________;(2)(-11)-2=______________;

(3)0-(-6)=____________;(4)(-7)-(+8)=____________;

(5)-12-(-5)=____________;(6)3比5大____________;

(7)-8比-2小___________;(8)-4-()=10;

(9)如果,,则的符号是___________;

(10)用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米__________.

2.判断题

(1)两数相减,差一定小于被减数.()

(2)(-2)-(+3)=2+(-3).()

(3)零减去一个数等于这个数的相反数.()

(4)方程在有理数范围内无解.()

(5)若,,,.()

九、布置作业

(一)必做题:课本第83页中2.偶数题,3.偶数题,4.偶数题.

(二)选做题:课本第84页中5、8.

十、板书设计

随堂练习答案.

1.(1)6;(2)-13;(3)6;(4)-15;

(5)-7;(6)-2;(7)6;(8)-4;

(9)+;(10)8848-(-155).

2.× × √ × √

作业答案

(一)必做题:2.(2)102;(4)-68;(6)-210;(8)92

3.(2)-0.6;(4)0.2;(6)-1.5;(8)9.11

(二)选做题:5.(1)-9;(2)-5;(3)1;(4)12;(5)-2.28;(6)

8.(1)4;(2)5;(3)7;(4)5

《有理数的减法》教案 22

张化 安徽省合肥市第五十中学

一、教材分析:

《有理数的减法》是北师大版《数学》实验教科书七年级上册第二章第五节的内容。

“数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算。本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算。通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础。

鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下:

1、知识目标:

经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算。

2、能力目标:

经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想。

3、情感目标:

在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。

为了实现以上教学目标,确定本节课的教学重点是:有理数的减法法则的理解和运用。教学难点是:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题。

二、学情分析:

我们面对的教学对象是已具备一定知识储备和一定认知能力的个性鲜明的学生,而不是一张“白纸”,因此关注学生的情况对教学是十分有必要的。

在生活中学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面;在小学阶段学生进一步学习了作为“数的运算”的减法运算,但这种减法运算的学习很大程度上的是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在。因此在教学中一方面要利用这些既有的知识储备作为知识生长的“最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义。

此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强。因此在教学过程中要做好调控。

三、教法选择及学法指导:

《课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导——发现法”组织教学。其基本程序设计为:创设情境——提出猜想——探索验证——总结归纳——反馈运用。

上述教学程序的实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的。本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从列举特例到归纳(不完全归纳)出一般的减法法则的全过程,体验知识产生和发展的全过程。

四、过程分析:

教学环节教学活动设计设计说明创设情境 自然引入1、首先与学生互动谈论合肥本地今日的气温,了解合肥今天的最高气温和最低气温。提问:合肥今天的温差是多少度?你是怎样计算的? 2、自然过渡到乌鲁木齐的温差的计算问题,在学生列出算式4–(–3)后引入课题:有理数的减法(板书课题)通过温度的比较让学生明白减法的实际意义在于同类量之间的比较,为后来运用减法解决实际问题打下基础。 从学生身边的实际引入新课,让学生感受到数学就在自己身边,增强学数学的乐趣。同时这也符合七年级学生的认知特征,使学生乐于进一步探索。     探索规律         归纳结论   在学生提出可以用  4–(–3)计算乌鲁木齐的温差后,教师鼓励学生充分探索计算4–(–3)的方法,得出结果为7. 在学生得出4–(–3)=7后,教师引导学生比较 4–(–3)=7与4+3=7这两个算式及其结果。  在学生对有理数的减法计算提出初步的猜想“减去一个数等于加上这个数的相反数”后,教师设问:只有4–(–3)=4+3=7这一个例子,你能不能断定这个猜想成立?引导学生通过列举具有不同代表性的特例,如:正数减去正数、正数减去零、正数减去负数、负数减去正数、负数减去零、负数减去负数、零减去正数、零减去零、零减去负数等。最后请学生根据上面的数学活动经验自主总结归纳有理数的减法法则。(教师板书这一法则)学生得出结果的方法可能不一样,教学中只要是合理的都应鼓励。如采取逆运算的方法,或利用温度计直接数读数的方法等。  对4–(–3)=7与4+3=7的观察、比较,是进一步探索有理数减法法则的基础。可借助多媒体课件演示算式的规律,帮助学生探索其中的内在关系。  从提出猜想到得出正确得结论之间有一个探索验证的过程,这个过程正是新课程改革所提倡的“做数学”的过程,教学中要提供足够的时间让学生探索、交流。 学生通过相互补充,不断列举不同代表性的特例,在合作交流中彻底理解有理数相减时总成立的一般法则。而这个“举例”过程,正是一个“数学化”的过程,正是一种对数学素养的培养。  学生的归纳可能不规范,教师可请学生互相交流、补充使之规范,从而培养学生的抽象概括能力及口头表达能力。例题讲解 即时反馈1、师生共同完成p53例1,其中第(1)小题教师讲解,其余各题请学生完成。在完成例1后,教学中采用分组竞赛的方法及时处理p54“随堂练习”。 2、师生共同完成p53例2、p54例3教师要通过引导学生分析实际情境,让学生在实际情境中进一步体会减法的意义,并熟练利用减法法则进行减法运算。 教师讲解第(1)小题时要点明算理,规范解答。 互动交流式的练习方式让学生的学习更积极主动。学生在活动中能体会参与数学活动的乐趣。 例2、例3是实际问题,它们的解答有利于培养学生“用数学”的意识。 拓展应用 师生一起分析p55的习题第5题。在弄清题意后,请学生填写方阵图。 解决问题的核心是找到“每个数都加上的同一个数”是什么,这就是有理数的减法在这个实际情境下的应用。另一方面,本题也提供了一个三阶幻方的一般填法,拓展了知识面,并为“试一试”的思考提供参考。课堂总结多媒体出示总结性问题:1、这一节课我们一起学习了哪些知识?2、对这些内容你有什么体会,请与你的同伴交流。  鼓励学生积极发言,增进师生、生生之间的交流、互动。 布置作业1、课堂作业:p54-55习题2.6 第1、2、3、4题2、课外思考:p55习题2.6  试一试利用课堂作业及时反馈本课重、难点。利用课外思考给部分学生提供进一步发展的机会。

上一篇:2.2有理数的减法(1)(2)

下一篇:有理数的减法(练习)

七年级数学《有理数的减法》教案 23

七年级上2.5有理数的减法(一)教案

教学目标:

1、经历探索有理数减法法则的过程。

2、理解并初步掌握有理数减法法则,会做有理数减法运算。

3、能根据具体问题,培养抽象概括能力和口头表达能力。

教学重点运用有理数减法法则做有理数减法运算。

教学难点有理数减法法则的得出。

教具学具多媒体、教材、计算器

教学方法研讨法、讲练结合

教学过程一、引入新课:

师:下面列出的是连续四周的最高和最低气温:

第1周第二周第三周第四周

最高气温+6℃0℃+4℃-2℃

最低气温+2℃-5℃-2℃-5℃

周温差

求每周的温差时,应运用哪一种运算?�

生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。

列式为;

(+6)-(+2)=4

0-(-5)=5

(+4)-(-2)=6

(-2)-(-5)=3

教学过程二、有理数减法法则的推倒:

师:1、根据上面的计算和计算结果,让我们以求四周的温差为例子研究一下,是否可以用加法的知识类做减法的运算。

2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么?

3、自己设计一些有理数的减法,用计算器检验一下你归纳的减法法则是否正确。

举例:(-5)+()=-2

得出(-5)+(+3)=-2

所以得到(-2)-(-5)=+3

而(-2)+(+5)=+3

有理数减法法则:减去一个数,等于加上这个数的相反数。

教学过程三、法则的应用:

例1:先做笔算,再用计数器检验。

(1)(-34)-(+56)-(-28);

(2)(+25)-(-293)-(+472)

教学过程

解:(1)原式=-34+(-56)+(+28)

=-90+(+28)

=-62

(2)原式=+25+(+293)+(-472)

=+25+(-836)

= 676

注意:强调计算过程不能跳步,体现有理数减法法则的运用。

检测题

教学过程四、练习反馈:

师:巡视个别指导,订正答案。

教学过程五、小结:

有理数减法法则:

减去一个数,等于加上这个数的相反数。

有理数减法法则:

减去一个数,等于加上

这个数的相反数。例1:先做笔算,再用计数器检验。

(1)(-34)-(+56)-(-28);

(2)(+25)-(-293)-(+472)