首页 > 教学教案 > 初中教案 > 初一教案 > 解一元一次方程优秀7篇正文

《解一元一次方程优秀7篇》

时间:

作为一名到岗不久的人民教师,我们都希望有一流的课堂教学能力,在写教学反思的时候可以反思自己的教学失误,快来参考教学反思是怎么写的吧!如下是勤劳的编辑给家人们整理的解一元一次方程优秀7篇,仅供参考,希望对大家有所启发。

元一次方程教学反思 篇1

一元一次方程的解法—移项,本节课的内容是人教版第三章第二节。在学习了等式的性质一,二之后,教案作为衔接教材与课程桥梁的作用:在本次教学设计中,学生参与课堂,获得了教材提供学生需要掌握的知识,根据教学内容的特点,我创设了各种活动情境,充实学生的实践活动,把培养和解方程思想观念的目标落到实处。在以后教学中我还要加强以下三点。

一、应加强数学课堂教学紧密联系生活

学习内容来自学生生活实际,在学生已有的经验的基础上学习,可使学习更有效。因为,学习内容贴近学生知识经验,符合学生心理特征,容易形成知识结构,同时也充分体现了学习生活化的理念,体现了现代教育思想所倡导的“数学课堂教学应向学生提供与生活实际密切联系的、有价值的、富有趣味的教学内容”这一基本理念。我在教学中与生活中实例举得不够。

二、要多给学生的活动提供充足的时间和空间

本课教学过程中我为学生创设了从事数学学习活动和交流的空间。例如:,我先让学生分组探讨出比较的方法,怎样才把4x右边去掉。利用等式的性质一。这样学生全面、主动地参与到学习过程中,使不同的学生在数学学习中获得不同的发展,学生的'个性得到张扬。让学生经历了知识形成的全过程,加深了学生对面积含义的理解,同时培养了学生的分析、比较能力与合作意识。

三、加强评价

我在传授知识,培养学生能力的同时,没有把激发调动学生进一步学习的兴趣和欲望作为课堂教学的重要任务,因此,在课堂教学中没有发挥好课堂评判语的激励功能。教师通过对学生学习的激励性评价,增强学生学习的自信心,激发继续学习的动机,调动学生思维的积极性,尤其对后进学生产生鞭策作用。评价的可持续性更是应该加强的。

对本教案还应加强要多给学生的活动提供充足的时间和空间,及时对学生进行评价。

元一次方程数学教案 篇2

2.自主探索、合作交流:

先由学生独立思考求解,再小组合作交流,师生共同评价分析。

方法1:

解:方程两边都加上2,得5x-2+2=8+2

也就是 5x=8+2

合并同类项,得5x=10

所以,x=2

3.理性归纳、得出结论

(让学生通过观察、归纳,独立发现移项法则。)

比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于

5x-2=8 5x=8+2

即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项。

教学建议:关于移项法则,不应只强调记忆,更应强调理解。学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性).

方法2;

解:移项,得 5x=8+2

合并同类项,得5x=10

方程两边都除以5,得x=2

4.运用反思、拓展创新

[例1] 解下列方程:(1) 2x+6=1 (2) 3x+3=2x+7

教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流。

[例2] 解方程:

教学建议:①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的解法合理,就应给予鼓励。

②在移项时,学生常会犯一些错误,如移项忘记变号等。这时,教士不要急于求成,而要引导学生反思自己的解题过程。必要时,可让学生利用等式的性质和移项法则两种方法解例1、例2中的'方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误。

5.小结回顾:学生谈本节课的收获与体会。师强调:移项法则。

6.布置作业: (略)

《解一元一次方程》教案 篇3

解一元一次方程

【教学任务分析】教学目标知识技能

1.用一元一次方程解决“数字型”问题;

2.能熟练的通过合并,移项解一元一次方程;

3.进一步学习、体会用一元一次方程解决实际问题。

过程

方法通过学生自主探究,师生共同研讨,体验将实际问题转化成数学问题,学会探索数列中的规律,建立等量关系并加以解决,同时进一步渗透化归思想。

情感

态度经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力,体会数学对实践的指导意义。

重点建立一元一次方程解决实际问题的模型。

难点探索并发现实际问题中的等量关系,并列出方程。

【教学环节安排】

环节教学问题设计教学活动设计

入牵线搭桥,解下列方程:

(1)-5x+5=-6x;(2);

(3)0.5x+0.7=1.9x;

总结解“ax+b=cx+d”类型的一元一次方程的步骤方法。

引出问题即课本例3

问:你能利用所学知识解决有关数列的问题吗?教师:出示题目,提出要求。

学生:独立完成,根据讲评核对、自我评价,了解掌握情况。

探究一:数字问题

例3有一列数,按一定规律排列成1,-3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?

【分析】1.引导学生观察这列数有什么规律?

①数值变化规律?②符号变化规律?

结论:后面一个数是前一个数的-3倍。

2.怎样求出这三个数?

①设三个相邻数中的第一个数为x,那么其它两个数怎么表示?

②列出方程:根据三个数的和是-1701列出方程。

③解略

变式:你能设其它的数列方程解出吗?试一试。比比较哪种设法简单。

探究二:百分比问题(习题3.2第8题)

【问题】某乡改种玉米为种优质杂粮后,今年农民人均收入比去年提高20%.今年人均收入比去年的1.5倍少1200元。这个乡去年农民人均收入是多少元?

【分析】①若设这个乡去年农民人均收入是x元,今年人均收入比去年提高20%,那么今年的收入是_________元;

②因为今年的人均收入比去年的1.5倍少1200元,所以今年的收入又可以表示为_________元。

③根据“表示同一个量的两个式子相等”可以列出方程为________________________.

解答略教师:引导学生分析。

2.本例是有关数列的数学问题,题要求出三个未知数,这需要学生观察发现它们的排列规律,问题具有一定的挑战性,能激发学生学习探索规律类型的问题。

学生:观察、讨论、阐述自己的发现,并互相交流。

根据分析列出方程并解出,求出所求三个数。

备注:寻找数的排列规律是难点,可让学生小组内讨论发现、解决。

变换设法,列出方程,比较优劣、阐述发现和体会。

教师:出示题目,引导学生,让学生尝试分析,多鼓励。

学生:根据引导思考、回答、阐述自己的观点和认识。

根据共同的分析,列出方程并解出,

(说明:此题目数以百分比、增长率问题可根据实际情况安排,若没时间,可在习题课上处理)

尝试应用

1、填空

(1)有个三位数,个位上的数字是a,十位上的数字是b,百位上的数字是c,则这个三位数是:_______________.

(2)有一数列,按一定规律排成1,-2,3,2,-4,6,3,-6,9,接下来的三个数为_____________________.

(3)三个连续偶数,设第一个为2x,那么第二个为_______,第三个为______,它们的和是__________;若设中间的一个为x,那么第一个为_____,第三个为______,它们的和是__________.

2.一个三位数,三个数位上的数字的和为17,百位上的数字比十位上的数字大7,个位上的数字是十位上数字的3倍,你能求出这个三位数吗?这是最经常出现的一类数字问题:引导学生分析已知各位上的数字,怎么表示这个数,理解为什么不能表示成cba?这是解决这类问题的基础。

通过(3)题理解连续数的表示法,并感受怎么表示最简单。

通过2题让学生理解怎么设?以及怎么设简单(舍都有联系的一个),并感受用未知数表示多个未知量,顺藤摸瓜,从而列出方程的顺向思维方式。

教师:结合完成题目,汇总讲解,重点在于解法。

成果

展示1.通过本节所学你有哪些收获?

2.谈谈你掌握的。方法和学习的感受,以及你对应用方程解决问题的体会。学生自我阐述,教师评价鼓励、补充总结。

补偿提高1.有一数列,按一定规律排成0,2,6,12,20,30,…,则第8个数为______,第n个数为_____.

2.下面给出的是20xx年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,圈出的三个数的和不可能是( ).

A.69B.54C.27D.40

通过练习,掌握数字问题的分类及不同解法,巩固、体会用方程解决问题的思路和思维方式,学会用方程解决问题。

题目设置是对前面学生所出现的问题进行针对性的补偿和补充,也可对学有余力的学生拓展提高。

根据学生完成情况灵活设置问题。

作业

设计作业:

必做题:课本4、5、第94页6题。

选做题:同步探究。教师布置作业,并提出要求。

学生课下独立完成,延续课堂。

授课教师:

20xx年10月31日

初中七年级上册数学《解一元一次方程》教案优质 篇4

教学目的:

知识与技能目标:

会进行整式加减的运算,并能说 明其中 的算理,发 展有条理的思考及其语言表达能力。

过程与方法:

通过探索 规律的问 题,进一步体会符号表示的意义,

通过 对整式加减的学习,深入体会代数式在实际生活中的应用,它为后面学习方程(组)、不等式及函数等知识打下良好的基础,同时,也使我们体会到数学知识的产生来源于实际生产和生活的需求,反之,它又服务于实际生活的方方面面。

教学重点、难点:

重点:整式加减的运算。

难点:探索规律的猜想。

授课时间:

教学过程:

Ⅰ.创设现实情景,引入新课

摆第1个小屋子需要5枚棋子,摆第2个需要 枚棋 子,摆 第3个需要 枚棋子。

按照这样的方式继续摆下去。

(1)摆第10个这样的小屋子需要 枚棋子

(2)摆第n个这样的小屋子需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问 题吗?小组讨论。

Ⅱ.根据现实情景,讲授新课

例题讲解:

练习:1、计算:

(1)(11x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)

(3)x-(1-2x+x2)+(-1-x2) (4)(8x y-3x2)-5xy-2(3xy-2x2)

2、已知:A=x3-x2-1,B=x2-2,计算:(1)B-A (2)A-3B

Ⅲ.做一做

P11 随堂练习

Ⅳ.课时小结

要善于在图形变化中发现规律,能熟练的对整式加减进行运算。

Ⅴ.课后作业

P12习题1.3:1(2)、(3)、(6),2。

板书设计:

第二节 整式的加减(2)

一、旅游中发现的几何体

二、生活中常见的几何体

VI.教学后记

元一次方程 篇5

复习目标:

(1)了解方程、以及方程的解等基本概念。

(2)会解。

(3)会根据具体问题中的数量关系列出并求解。

重点、难点:

1. 重点:

及方程的解的基本概念。

的解法。

会用解决实际问题。

2. 难点:

的解法的灵活应用。

寻找实际问题中的等量关系。

【典型例题】

例1.

分析:明确的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。

在这里特别注意:未知数的次数及系数。

这三个方程中含有两个未知数x、y,要想成为就要使其中一个未知数的系数为0。

解:

例2.

分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。

此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。

解:

将m=1代入关于x的方程,得:

例3.

解:

注意:解的一般步骤为以上五步,但在解方程时,要注意灵活运用。

例4.

分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。

解:

例5.

分析:此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。

解:

注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。

解:

例6. 已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。

分析:列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为x m/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为x m

解一:设车的速度为x m/s

经检验,符合题意。

答:车的速度为20m/s。

解二:设车身的长度为x m

经检验,符合题意。

答:车的速度为(1000+200)/60=20m/s

例7. 某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票

售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?

分析:此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。

解:设团体票共2a张,零售票共a张,零售票价x元

经检验,符合题意。

答:零售票价为19.2元。

【模拟试题】

一。 填空题。

1. 已知方程 的解比关于x的方程 的解大2,则 _________。

2. 关于x的方程 的解为整数,则 __________。

3. 若 是关于x的,则k=_________,x=_________。

4. 若代数式 与 的值互为相反数,则m=_________。

5. 的解为x=0,那么a、b应满足的条件是__________。

二。 解方程。

1.

2.

3.

4.

三。 列方程解应用题。

1. 一商贩以每个鸡蛋0.24元购进一批鸡蛋,但在途中不慎碰坏12个,剩下的鸡蛋以每个0.28元售出,结果获利11.2元,问该商贩当初买进多少个鸡蛋?

2. 分别戴着红色和黄色旅行帽的若干同学坐一只船,在公园内划船,突然间,一个戴红帽子的同学说:“我看到的我们船上的红帽子和黄帽子一样多。”这时一个戴黄帽子的同学说:“不对,你错了,我看到的红帽子是黄帽子的2倍。”问:戴红帽子和黄帽子的同学各有多少人?

【试题答案】

一。 填空题。

1.                     2.

3. 1,1                     4.                   5.

二。 解方程。

1.                      2.

3.                    4.

三。 列方程解应用题。

1. 买364个鸡蛋

2. 戴红帽子4人,黄帽子3人

元一次方程数学教案 篇6

教学内容一元一次方程

教学目标

1.熟悉利用等式的性质解一元一次方程的。基本过程。

2.通过具体的例子,归纳移项法则

3.掌握解一元一次方程的基本方法,能熟练求解一元一次方程(数字系数),能判别解的合理性。

教学重点

重点是移项法则

教学难点

重点是移项法则

教学流程

元一次方程教学反思 篇7

20xx年学初开学已经三个礼拜了,我和同学们共同学习了第七章一元一次方程的教学内容。在解一元一次方程时,同学们出现了各种各样的问题,现就同学们在解一元一次方程时时常容易犯的错误进行列举一下。

有的同学在移项时容易忘记改变符号,导致结果错误;有的同学在合并同类项时出项这样那样的错误;有的同学在解带有分母的一元一次方程时去分母显得有困难,尤其是各项中有一项为单独一个数字1时去分母往往就把这项忘记乘以公分母了;还有的。同学在遇到具有百分之几的时候显得手足无措,不知道把百分号化成小数来计算,尤其是遇到x%时就更蒙了。

针对这些问题我除了自己出了一些相关的习题让同学们加强训练并讲解之外,还组织每个小组的组长有针对性的给同学们出题并随时指导,采取兵练兵的方案,这样同学们对解一元一次方程有了很大的进步。同学们由怕解方程慢慢的开始喜欢解方程了,同学们显得很有自信心,对此我感觉非常欣慰。

在今后的教学中我会随时搜集同学们容易出现问题的地方,强化讲解,对症下药,让同学们都能越学越有乐趣,越学越有自信。当然让每一个同学都能学的好,学的快,还不是一个简单的问题,我会继续努力!