首页 > 教学教案 > 初中教案 > 初二教案 > 八年级数学教案(精选3篇)正文

《八年级数学教案(精选3篇)》

时间:

作为一位不辞辛劳的人民教师,总归要编写教案,借助教案可以让教学工作更科学化。那么写教案需要注意哪些问题呢?以下是人见人爱的小编分享的八年级数学教案(精选3篇),您的肯定与分享是对小编最大的鼓励。

八年级数学教案 篇1

教学目标:

1. 掌握三角形内角和定理及其推论;

2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;

3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

教学重点:

三角形内角和定理及其推论。

教学难点:

三角形内角和定理的证明

教学用具:

直尺、微机

教学方法:

互动式,谈话法

教学过程:

1、创设情境,自然引入

把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?

问题2 你能用几何推理来论证得到的关系吗?

对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)

新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

2、设问质疑,探究尝试

(1)求证:三角形三个内角的和等于

让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

问题1 观察:三个内角拼成了一个

什么角?问题2 此实验给我们一个什么启示?

(把三角形的三个内角之和转化为一个平角)

问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

学生回答后,电脑显示图表。

(3)三角形中三个内角之和为定值

,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?

问题2 三角形一个外角与它不相邻的两个内角有何关系?

问题3 三角形一个外角与其中的一个不相邻内角有何关系?

其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

3、三角形三个内角关系的定理及推论

引导学生分析并严格书写解题过程

八年级数学教案 篇2

教学目标

(一)教学知识点

1、等腰三角形的概念、

2、等腰三角形的性质、

3、等腰三角形的概念及性质的应用、

1、经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点、

2、探索并掌握等腰三角形的性质、

(三)情感与价值观要求

通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯、

教学重点

1、等腰三角形的概念及性质、

2、等腰三角形性质的应用、

教学难点

等腰三角形三线合一的性质的理解及其应用、

教学方法

探究归纳法、

教具准备

师:多媒体课件、投影仪;

生:硬纸、剪刀、

教学过程

1、提出问题,创设情境

(师)在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案、这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形、来研究:

①三角形是轴对称图形吗?

②什么样的三角形是轴对称图形?

(生)有的三角形是轴对称图形,有的三角形不是。

(师)那什么样的三角形是轴对称图形?

(生)满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。

(师)很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。

2、导入新课

(师)同学们通过自己的思考来做一个等腰三角形。作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。

(生乙)在甲同学的做法中,A点可以取直线L上的任意一点。

(师)对,按这种方法我们可以得到一系列的等腰三角形、现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本P138探究中的方法,剪出一个等腰三角形。

(师)按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形、相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角、同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。

(师)有了上述概念,同学们来想一想。

(演示课件)

1、等腰三角形是轴对称图形吗?请找出它的对称轴。

2、等腰三角形的两底角有什么关系?

3、顶角的平分线所在的直线是等腰三角形的对称轴吗?

4、底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

(生甲)等腰三角形是轴对称图形、它的对称轴是顶角的平分线所在的直线、因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。

(师)同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。

(生乙)我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等。

(生丙)我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线。

(生丁)我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴。

(生戊)老师,我发现底边上的高所在的直线也是等腰三角形的对称轴。

(师)你们说的是同一条直线吗?大家来动手折叠、观察。

(生齐声)它们是同一条直线。

(师)很好、现在同学们来归纳等腰三角形的性质。。

(生)我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。

(师)很好,大家看屏幕。

(演示课件)

等腰三角形的性质:

1、等腰三角形的两个底角相等(简写成“等边对等角”)

2、等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”)、

(师)由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质、同学们现在就动手来写出这些证明过程)

(投影仪演示学生证明过程)

(生甲)如右图,在ABC中,AB=AC,作底边BC的中线AD,因为

所以BAD≌CAD(SSS)、

所以∠B=∠C、

(生乙)如右图,在ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

所以BAD≌CAD、

所以BD=CD,∠BDA=∠CDA=∠BDC=90°。

(师)很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范、下面我们来看大屏幕。

(演示课件)

(例1)如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数、

(师)同学们先思考一下,我们再来分析这个题、

(生)根据等边对等角的性质,我们可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A。再由三角形内角和为180°,就可求出ABC的三个内角。

(师)这位同学分析得很好,对我们以前学过的定理也很熟悉、如果我们在解的过程中把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷。

(课件演示)

(例)因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC、∠A=∠ABD(等边对等角)、

设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x、

于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°。

在ABC中,∠A=35°,∠ABC=∠C=72°、

(师)下面我们通过练习来巩固这节课所学的知识、

3、随堂练习

(一)课本P141练习1、2、3。

练习

1、如下图,在下列等腰三角形中,分别求出它们的底角的度数、

答案:(1)72°(2)30°

2、如右图,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?

答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD、

3、如右图,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数、

答:∠B=77°,∠C=38、5°、

(二)阅读课本P138~P140,然后小结、

4、课时小结

这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用、等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高、

我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们、

5、课后作业

(一)课本P147─1、3、4、8题、

(二)1、预习课本P141~P143、

2、预习提纲:等腰三角形的判定、

6、活动与探究

如右图,在ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E、

求证:AE=CE、

过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,等腰三角形的性质、

结果:

证明:延长CD交AB的延长线于P,如右图,在ADP和ADC中

ADP≌ADC、

∠P=∠ACD、

又DE∥AP,

∠4=∠P、

∠4=∠ACD、

DE=EC、

同理可证:AE=DE、

AE=CE、

板书设计

八年级数学教案 篇3

活动一、创设情境

引入:首先我们来看几道练习题(幻灯片)

(复习:平行线及三角形全等的知识)

下面我们一起来欣赏一组图片(幻灯片)

[学生活动]观看后答问题:你看到了哪些图形?

(各式各样的图案装点着我们的生活,使我们这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?)

[学生活动]小组合作交流,拼出图案的类型。

同学们所拼的图形中,除了有我们学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的性质。(幻灯片出示课题)

活动二、合作交流,探求新知

问题(1):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢?你怎么知道这些四边形是平行四边形?(拿一模型,幻灯片)

[学生活动]认真观察、讨论、思考、推理。

鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义。

学生交流,归纳:有两组对边分别平行的四边形叫做平行四边形。

并说明:平行四边形不相邻的两个顶点连成的线段叫它的对角线。

平行四边形用“”表示,如图平行四边形ABCD记作“ABCD”读作:平行四边形ABCD。(幻灯片出示揭示课题)

问题(2):由平行四边形的定义,我们知道平行四边形的两组对边分别平行,平行四边形还有什么特征呢?

[学生活动]动手操作,小组演示交流。鼓励学生用多种方法探究。

小结平行四边形的性质:

平行四边形的对边相等

平行四边形的对角相等(这里要弄清对角、对边两个名词)

你能演示你的结论是如何得到的吗?(学生演示)

你能证明吗?(幻灯片出示证明题)

[学生活动]先分析思路尤其是辅助线,请学生上黑板证明。

自己完成性质2的证明。

活动三、运用新知

性质掌握了吗?一起来看一道题目:

尝试练习(幻灯片)例1

[学生活动]作尝试性解答。