首页 > 实用范文 > 工作报告 > 实验报告 > SPSS相关分析实验报告(合集两篇)正文

《SPSS相关分析实验报告(合集两篇)》

时间:

篇1:SPSS相关分析实验报告

实验报告

学生姓名:

一、实验室名称:

二、实验项目名称:

相关分析

三、实验原理

相关关系是不完全确定的随机关系。在相关关系的情况下,当一个或几个相互联系的变量取一定值得时候,与之相应的另一变量的值虽然不确定,但它仍然按照某种规律在一定的范围内变化。

按照数据度量的尺度不同,相关分析的方法也不同,连续变量之间的相关性常用Pearson简单相关系数测定;定序变量的相关系数常用Spearman秩相关系数和Kendall秩相关系数测定;定类变量的相关分析要使用列连表分析法。

四、实验目的

理解相关分析的基本原理,掌握在SPSS软件中相关分析的主要参数设置及其含义,掌握SPSS软件分析结果的含义及其分析。

五、实验内容及步骤

实验内容:以雇员表为例,共有474条数据,运用相关分析方法对变量间的相关关系进行分析。

1)分析性别与工资之间是否存在相关关系。

2)分析教育程度与工资之间是否存在相关关系。

实验要求:掌握相关分析方法的计算思路及其在SPSS环境下的操作方法,掌握输出结果的解释。

1. 分析性别与工资之间是否存在相关关系。

分析:性别属于定类变量,是离散值,因使用卡方检验。 Step1.操作为Analyze Descriptive Statistics Crosstabs

Step2.将性别(Gender)和收入(Current Salary)分别移入Rows列表框和Columns列表框。

Step3.单击Statistics按钮,在弹出的子对话框中选中默认的Chi-square,进行卡方检验。退回到主对话框,单击ok。

2. 分析教育程度与工资之间是否存在相关关系。

分析:教育程度为定序变量,工资为连续变量,可使用Spearman和Kendall秩相关系数检验。

Step1. 用散点图初步判断二变量的相关性,操作为Graphs / Legacy Dialogs / Scatter,选择Simple Scatter,教育程度为自变量,工资为因变量,做散点图。

篇2:spss对数据进行相关性分析实验报告

实验一

一.实验目的

掌握用spss软件对数据进行相关性分析,熟悉其操作过程,并能分析其结果。

二.实验原理

相关性分析是考察两个变量之间线性关系的一种统计分析方法。更精确地说,当一个变量发生变化时,另一个变量如何变化,此时就需要通过计算相关系数来做深入的定量考察。P值是针对原假设H0:假设两变量无线性相关而言的。一般假设检验的显著性水平为0.05,你只需要拿p值和0.05进行比较:如果p值小于0.05,就拒绝原假设H0,说明两变量有线性相关的关系,他们无线性相关的可能性小于0.05;如果大于0.05,则一般认为无线性相关关系,至于相关的程度则要看相关系数R值,r越大,说明越相关。越小,则相关程度越低。而偏相关分析是指当两个变量同时与第三个变量相关时,将第三个变量的影响剔除,只分析另外两个变量之间相关程度的过程,其检验过程与相关分析相似。 三、实验内容

掌握使用spss软件对数据进行相关性分析,从变量之间的相关关系,寻求与人均食品支出密切相关的因素。

(1)检验人均食品支出与粮价和人均收入之间的相关关系。

a.打开spss软件,输入“回归人均食品支出”数据。

b.在spssd的菜单栏中选择点击, 弹出一个对话窗口。

C.在对话窗口中点击ok,系统输出结果,如下表。

从表中可以看出,人均食品支出与人均收入之间的相关系数为0.921,t检验的显著性概率为0.000<0.01,拒绝零假设,表明两个变量之间显著相关。人均食品支出与粮食平均单价之间的相关系数为0.730,t检验的显著性概率为0.000<0.01,拒绝零假设,表明两个变量之间也显著相关。

(2)研究人均食品支出与人均收入之间的偏相关关系。

读入数据后:

A.点击系统弹出一个对话窗口。

B.点击OK,系统输出结果,如下表。

从表中可以看出,人均食品支出与人均收入的偏相关系数为0.8665,显著性概率p=0.000<0.01,说明在剔除了粮食单价的影响后,人均食品支出与人均收入依然有显著性关系,并且0.8665<0.921,说明它们之间的显著性关系稍有减弱。 通过相关关系与偏相关关系的比较可以得知:在粮价的影响下,人均收入对人均食品支出的影响更大。

三、实验总结

1、熟悉了用spss软件对数据进行相关性分析,熟悉其操作过程。

2、通过spss软件输出的数据结果并能够分析其相互之间的关系,并且解决实际问题。

3、充分理解了相关性分析的应用原理。

实验二

一、实验目的

掌握用spss软件对数据进行分析,用K-S检验单一样本是否来自某一特定分布,熟悉其操作过程,并能分析其结果。

二、实验原理

K-S检验方法能够利用样本数据推断样本来自的总体是否服从某一理论分布,是一种拟合优度的检验方法,适用于探索连续型随机变量的分布。单样本K-S检验的原假设是:样本来自得总体与指定的理论分布无显著差异,SPSS的理论分布主要包括正态分布、均匀分布、指数分布和泊松分布等。 它的假设检验问题: H0:样本所来自的总体分布服从某特定分布

H1:样本所来自的总体分布不服从某特定分布

k-s检验是一种非常实用的检验数据分布的方法,应该熟练掌握。

二.实验内容

用k-s检验“回归人均食品支出”数据中的人均收入服从什么分布,并且了解k-s检验的操作过程和原理。

A.打开spss软件,输入“回归人均食品支出”数据。

B.点击nonparametric tests

1-sample k-s,系统弹出一个对话窗口。

C.点击OK,系统输出结果,如下表。

在上面有四个检验,Test1是检验这组数据是否服从标准正态分布,从表中可看出T检验的显著性概率为0.140>0.05,接受零假设,即这组数据服从标准正态分布。Test2是检验这组数据是否服从均匀分布,从表中可看出T检验的显著性概率为0.000<0.05,拒绝零假设,即这组数据不服从均匀分布。Test3是检验这组数据是否服从指数分布,从表中可看出T检验的显著性概率为0.000<0.05,拒绝零假设,即这组数据不服从指数分布。Test4是检验这组数据是否服从泊松分布,从表中可看出T检验的显著性概率为0.000<0.05,拒绝零假设,即这组数据不服从泊松分布。

三、实验总结

k-s检验方法是以样本数据的累计频数分布与特定理论分布比较,若两者间的差距很小,则推论该样本取自某特定分布族。